Factor
2\left(-x-6\right)\left(7x-4\right)
Evaluate
48-76x-14x^{2}
Graph
Share
Copied to clipboard
2\left(-7x^{2}-38x+24\right)
Factor out 2.
a+b=-38 ab=-7\times 24=-168
Consider -7x^{2}-38x+24. Factor the expression by grouping. First, the expression needs to be rewritten as -7x^{2}+ax+bx+24. To find a and b, set up a system to be solved.
1,-168 2,-84 3,-56 4,-42 6,-28 7,-24 8,-21 12,-14
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -168.
1-168=-167 2-84=-82 3-56=-53 4-42=-38 6-28=-22 7-24=-17 8-21=-13 12-14=-2
Calculate the sum for each pair.
a=4 b=-42
The solution is the pair that gives sum -38.
\left(-7x^{2}+4x\right)+\left(-42x+24\right)
Rewrite -7x^{2}-38x+24 as \left(-7x^{2}+4x\right)+\left(-42x+24\right).
-x\left(7x-4\right)-6\left(7x-4\right)
Factor out -x in the first and -6 in the second group.
\left(7x-4\right)\left(-x-6\right)
Factor out common term 7x-4 by using distributive property.
2\left(7x-4\right)\left(-x-6\right)
Rewrite the complete factored expression.
-14x^{2}-76x+48=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-76\right)±\sqrt{\left(-76\right)^{2}-4\left(-14\right)\times 48}}{2\left(-14\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-76\right)±\sqrt{5776-4\left(-14\right)\times 48}}{2\left(-14\right)}
Square -76.
x=\frac{-\left(-76\right)±\sqrt{5776+56\times 48}}{2\left(-14\right)}
Multiply -4 times -14.
x=\frac{-\left(-76\right)±\sqrt{5776+2688}}{2\left(-14\right)}
Multiply 56 times 48.
x=\frac{-\left(-76\right)±\sqrt{8464}}{2\left(-14\right)}
Add 5776 to 2688.
x=\frac{-\left(-76\right)±92}{2\left(-14\right)}
Take the square root of 8464.
x=\frac{76±92}{2\left(-14\right)}
The opposite of -76 is 76.
x=\frac{76±92}{-28}
Multiply 2 times -14.
x=\frac{168}{-28}
Now solve the equation x=\frac{76±92}{-28} when ± is plus. Add 76 to 92.
x=-6
Divide 168 by -28.
x=-\frac{16}{-28}
Now solve the equation x=\frac{76±92}{-28} when ± is minus. Subtract 92 from 76.
x=\frac{4}{7}
Reduce the fraction \frac{-16}{-28} to lowest terms by extracting and canceling out 4.
-14x^{2}-76x+48=-14\left(x-\left(-6\right)\right)\left(x-\frac{4}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6 for x_{1} and \frac{4}{7} for x_{2}.
-14x^{2}-76x+48=-14\left(x+6\right)\left(x-\frac{4}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-14x^{2}-76x+48=-14\left(x+6\right)\times \frac{-7x+4}{-7}
Subtract \frac{4}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-14x^{2}-76x+48=2\left(x+6\right)\left(-7x+4\right)
Cancel out 7, the greatest common factor in -14 and 7.
x ^ 2 +\frac{38}{7}x -\frac{24}{7} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{38}{7} rs = -\frac{24}{7}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{19}{7} - u s = -\frac{19}{7} + u
Two numbers r and s sum up to -\frac{38}{7} exactly when the average of the two numbers is \frac{1}{2}*-\frac{38}{7} = -\frac{19}{7}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{19}{7} - u) (-\frac{19}{7} + u) = -\frac{24}{7}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{24}{7}
\frac{361}{49} - u^2 = -\frac{24}{7}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{24}{7}-\frac{361}{49} = -\frac{529}{49}
Simplify the expression by subtracting \frac{361}{49} on both sides
u^2 = \frac{529}{49} u = \pm\sqrt{\frac{529}{49}} = \pm \frac{23}{7}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{19}{7} - \frac{23}{7} = -6 s = -\frac{19}{7} + \frac{23}{7} = 0.571
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}