Solve for x
x = \frac{\sqrt{29} + 1}{4} \approx 1.596291202
x=\frac{1-\sqrt{29}}{4}\approx -1.096291202
Graph
Share
Copied to clipboard
-14x^{2}+4x+14+6x^{2}=0
Add 6x^{2} to both sides.
-8x^{2}+4x+14=0
Combine -14x^{2} and 6x^{2} to get -8x^{2}.
x=\frac{-4±\sqrt{4^{2}-4\left(-8\right)\times 14}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 4 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-8\right)\times 14}}{2\left(-8\right)}
Square 4.
x=\frac{-4±\sqrt{16+32\times 14}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-4±\sqrt{16+448}}{2\left(-8\right)}
Multiply 32 times 14.
x=\frac{-4±\sqrt{464}}{2\left(-8\right)}
Add 16 to 448.
x=\frac{-4±4\sqrt{29}}{2\left(-8\right)}
Take the square root of 464.
x=\frac{-4±4\sqrt{29}}{-16}
Multiply 2 times -8.
x=\frac{4\sqrt{29}-4}{-16}
Now solve the equation x=\frac{-4±4\sqrt{29}}{-16} when ± is plus. Add -4 to 4\sqrt{29}.
x=\frac{1-\sqrt{29}}{4}
Divide -4+4\sqrt{29} by -16.
x=\frac{-4\sqrt{29}-4}{-16}
Now solve the equation x=\frac{-4±4\sqrt{29}}{-16} when ± is minus. Subtract 4\sqrt{29} from -4.
x=\frac{\sqrt{29}+1}{4}
Divide -4-4\sqrt{29} by -16.
x=\frac{1-\sqrt{29}}{4} x=\frac{\sqrt{29}+1}{4}
The equation is now solved.
-14x^{2}+4x+14+6x^{2}=0
Add 6x^{2} to both sides.
-8x^{2}+4x+14=0
Combine -14x^{2} and 6x^{2} to get -8x^{2}.
-8x^{2}+4x=-14
Subtract 14 from both sides. Anything subtracted from zero gives its negation.
\frac{-8x^{2}+4x}{-8}=-\frac{14}{-8}
Divide both sides by -8.
x^{2}+\frac{4}{-8}x=-\frac{14}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{1}{2}x=-\frac{14}{-8}
Reduce the fraction \frac{4}{-8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{2}x=\frac{7}{4}
Reduce the fraction \frac{-14}{-8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{7}{4}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{7}{4}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{29}{16}
Add \frac{7}{4} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{29}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{29}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{29}}{4} x-\frac{1}{4}=-\frac{\sqrt{29}}{4}
Simplify.
x=\frac{\sqrt{29}+1}{4} x=\frac{1-\sqrt{29}}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}