Solve for x
x=\frac{2\sqrt{1513}}{17}+10\approx 14.576153021
x=-\frac{2\sqrt{1513}}{17}+10\approx 5.423846979
Graph
Share
Copied to clipboard
-136x^{2}+2720x-10752=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2720±\sqrt{2720^{2}-4\left(-136\right)\left(-10752\right)}}{2\left(-136\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -136 for a, 2720 for b, and -10752 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2720±\sqrt{7398400-4\left(-136\right)\left(-10752\right)}}{2\left(-136\right)}
Square 2720.
x=\frac{-2720±\sqrt{7398400+544\left(-10752\right)}}{2\left(-136\right)}
Multiply -4 times -136.
x=\frac{-2720±\sqrt{7398400-5849088}}{2\left(-136\right)}
Multiply 544 times -10752.
x=\frac{-2720±\sqrt{1549312}}{2\left(-136\right)}
Add 7398400 to -5849088.
x=\frac{-2720±32\sqrt{1513}}{2\left(-136\right)}
Take the square root of 1549312.
x=\frac{-2720±32\sqrt{1513}}{-272}
Multiply 2 times -136.
x=\frac{32\sqrt{1513}-2720}{-272}
Now solve the equation x=\frac{-2720±32\sqrt{1513}}{-272} when ± is plus. Add -2720 to 32\sqrt{1513}.
x=-\frac{2\sqrt{1513}}{17}+10
Divide -2720+32\sqrt{1513} by -272.
x=\frac{-32\sqrt{1513}-2720}{-272}
Now solve the equation x=\frac{-2720±32\sqrt{1513}}{-272} when ± is minus. Subtract 32\sqrt{1513} from -2720.
x=\frac{2\sqrt{1513}}{17}+10
Divide -2720-32\sqrt{1513} by -272.
x=-\frac{2\sqrt{1513}}{17}+10 x=\frac{2\sqrt{1513}}{17}+10
The equation is now solved.
-136x^{2}+2720x-10752=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-136x^{2}+2720x-10752-\left(-10752\right)=-\left(-10752\right)
Add 10752 to both sides of the equation.
-136x^{2}+2720x=-\left(-10752\right)
Subtracting -10752 from itself leaves 0.
-136x^{2}+2720x=10752
Subtract -10752 from 0.
\frac{-136x^{2}+2720x}{-136}=\frac{10752}{-136}
Divide both sides by -136.
x^{2}+\frac{2720}{-136}x=\frac{10752}{-136}
Dividing by -136 undoes the multiplication by -136.
x^{2}-20x=\frac{10752}{-136}
Divide 2720 by -136.
x^{2}-20x=-\frac{1344}{17}
Reduce the fraction \frac{10752}{-136} to lowest terms by extracting and canceling out 8.
x^{2}-20x+\left(-10\right)^{2}=-\frac{1344}{17}+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-\frac{1344}{17}+100
Square -10.
x^{2}-20x+100=\frac{356}{17}
Add -\frac{1344}{17} to 100.
\left(x-10\right)^{2}=\frac{356}{17}
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{\frac{356}{17}}
Take the square root of both sides of the equation.
x-10=\frac{2\sqrt{1513}}{17} x-10=-\frac{2\sqrt{1513}}{17}
Simplify.
x=\frac{2\sqrt{1513}}{17}+10 x=-\frac{2\sqrt{1513}}{17}+10
Add 10 to both sides of the equation.
x ^ 2 -20x +\frac{1344}{17} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 20 rs = \frac{1344}{17}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 10 - u s = 10 + u
Two numbers r and s sum up to 20 exactly when the average of the two numbers is \frac{1}{2}*20 = 10. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(10 - u) (10 + u) = \frac{1344}{17}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1344}{17}
100 - u^2 = \frac{1344}{17}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1344}{17}-100 = -\frac{356}{17}
Simplify the expression by subtracting 100 on both sides
u^2 = \frac{356}{17} u = \pm\sqrt{\frac{356}{17}} = \pm \frac{\sqrt{356}}{\sqrt{17}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =10 - \frac{\sqrt{356}}{\sqrt{17}} = 5.424 s = 10 + \frac{\sqrt{356}}{\sqrt{17}} = 14.576
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}