Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=-\frac{1}{5}=-0.2
Graph
Share
Copied to clipboard
-13x^{2}-9x+4-5=2x^{2}-x
Subtract 5 from both sides.
-13x^{2}-9x-1=2x^{2}-x
Subtract 5 from 4 to get -1.
-13x^{2}-9x-1-2x^{2}=-x
Subtract 2x^{2} from both sides.
-15x^{2}-9x-1=-x
Combine -13x^{2} and -2x^{2} to get -15x^{2}.
-15x^{2}-9x-1+x=0
Add x to both sides.
-15x^{2}-8x-1=0
Combine -9x and x to get -8x.
a+b=-8 ab=-15\left(-1\right)=15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -15x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
-1,-15 -3,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 15.
-1-15=-16 -3-5=-8
Calculate the sum for each pair.
a=-3 b=-5
The solution is the pair that gives sum -8.
\left(-15x^{2}-3x\right)+\left(-5x-1\right)
Rewrite -15x^{2}-8x-1 as \left(-15x^{2}-3x\right)+\left(-5x-1\right).
3x\left(-5x-1\right)-5x-1
Factor out 3x in -15x^{2}-3x.
\left(-5x-1\right)\left(3x+1\right)
Factor out common term -5x-1 by using distributive property.
x=-\frac{1}{5} x=-\frac{1}{3}
To find equation solutions, solve -5x-1=0 and 3x+1=0.
-13x^{2}-9x+4-5=2x^{2}-x
Subtract 5 from both sides.
-13x^{2}-9x-1=2x^{2}-x
Subtract 5 from 4 to get -1.
-13x^{2}-9x-1-2x^{2}=-x
Subtract 2x^{2} from both sides.
-15x^{2}-9x-1=-x
Combine -13x^{2} and -2x^{2} to get -15x^{2}.
-15x^{2}-9x-1+x=0
Add x to both sides.
-15x^{2}-8x-1=0
Combine -9x and x to get -8x.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-15\right)\left(-1\right)}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, -8 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-15\right)\left(-1\right)}}{2\left(-15\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+60\left(-1\right)}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2\left(-15\right)}
Multiply 60 times -1.
x=\frac{-\left(-8\right)±\sqrt{4}}{2\left(-15\right)}
Add 64 to -60.
x=\frac{-\left(-8\right)±2}{2\left(-15\right)}
Take the square root of 4.
x=\frac{8±2}{2\left(-15\right)}
The opposite of -8 is 8.
x=\frac{8±2}{-30}
Multiply 2 times -15.
x=\frac{10}{-30}
Now solve the equation x=\frac{8±2}{-30} when ± is plus. Add 8 to 2.
x=-\frac{1}{3}
Reduce the fraction \frac{10}{-30} to lowest terms by extracting and canceling out 10.
x=\frac{6}{-30}
Now solve the equation x=\frac{8±2}{-30} when ± is minus. Subtract 2 from 8.
x=-\frac{1}{5}
Reduce the fraction \frac{6}{-30} to lowest terms by extracting and canceling out 6.
x=-\frac{1}{3} x=-\frac{1}{5}
The equation is now solved.
-13x^{2}-9x+4-2x^{2}=5-x
Subtract 2x^{2} from both sides.
-15x^{2}-9x+4=5-x
Combine -13x^{2} and -2x^{2} to get -15x^{2}.
-15x^{2}-9x+4+x=5
Add x to both sides.
-15x^{2}-8x+4=5
Combine -9x and x to get -8x.
-15x^{2}-8x=5-4
Subtract 4 from both sides.
-15x^{2}-8x=1
Subtract 4 from 5 to get 1.
\frac{-15x^{2}-8x}{-15}=\frac{1}{-15}
Divide both sides by -15.
x^{2}+\left(-\frac{8}{-15}\right)x=\frac{1}{-15}
Dividing by -15 undoes the multiplication by -15.
x^{2}+\frac{8}{15}x=\frac{1}{-15}
Divide -8 by -15.
x^{2}+\frac{8}{15}x=-\frac{1}{15}
Divide 1 by -15.
x^{2}+\frac{8}{15}x+\left(\frac{4}{15}\right)^{2}=-\frac{1}{15}+\left(\frac{4}{15}\right)^{2}
Divide \frac{8}{15}, the coefficient of the x term, by 2 to get \frac{4}{15}. Then add the square of \frac{4}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{15}x+\frac{16}{225}=-\frac{1}{15}+\frac{16}{225}
Square \frac{4}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{15}x+\frac{16}{225}=\frac{1}{225}
Add -\frac{1}{15} to \frac{16}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{15}\right)^{2}=\frac{1}{225}
Factor x^{2}+\frac{8}{15}x+\frac{16}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{15}\right)^{2}}=\sqrt{\frac{1}{225}}
Take the square root of both sides of the equation.
x+\frac{4}{15}=\frac{1}{15} x+\frac{4}{15}=-\frac{1}{15}
Simplify.
x=-\frac{1}{5} x=-\frac{1}{3}
Subtract \frac{4}{15} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}