Solve for t
t = \frac{\sqrt{6715}}{35} \approx 2.341288674
t = -\frac{\sqrt{6715}}{35} \approx -2.341288674
Share
Copied to clipboard
-12.5=14.36-\frac{49}{10}t^{2}
Multiply -\frac{1}{2} and 9.8 to get -\frac{49}{10}.
14.36-\frac{49}{10}t^{2}=-12.5
Swap sides so that all variable terms are on the left hand side.
-\frac{49}{10}t^{2}=-12.5-14.36
Subtract 14.36 from both sides.
-\frac{49}{10}t^{2}=-26.86
Subtract 14.36 from -12.5 to get -26.86.
t^{2}=-26.86\left(-\frac{10}{49}\right)
Multiply both sides by -\frac{10}{49}, the reciprocal of -\frac{49}{10}.
t^{2}=\frac{1343}{245}
Multiply -26.86 and -\frac{10}{49} to get \frac{1343}{245}.
t=\frac{\sqrt{6715}}{35} t=-\frac{\sqrt{6715}}{35}
Take the square root of both sides of the equation.
-12.5=14.36-\frac{49}{10}t^{2}
Multiply -\frac{1}{2} and 9.8 to get -\frac{49}{10}.
14.36-\frac{49}{10}t^{2}=-12.5
Swap sides so that all variable terms are on the left hand side.
14.36-\frac{49}{10}t^{2}+12.5=0
Add 12.5 to both sides.
26.86-\frac{49}{10}t^{2}=0
Add 14.36 and 12.5 to get 26.86.
-\frac{49}{10}t^{2}+26.86=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
t=\frac{0±\sqrt{0^{2}-4\left(-\frac{49}{10}\right)\times 26.86}}{2\left(-\frac{49}{10}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{49}{10} for a, 0 for b, and 26.86 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-\frac{49}{10}\right)\times 26.86}}{2\left(-\frac{49}{10}\right)}
Square 0.
t=\frac{0±\sqrt{\frac{98}{5}\times 26.86}}{2\left(-\frac{49}{10}\right)}
Multiply -4 times -\frac{49}{10}.
t=\frac{0±\sqrt{\frac{65807}{125}}}{2\left(-\frac{49}{10}\right)}
Multiply \frac{98}{5} times 26.86 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{0±\frac{7\sqrt{6715}}{25}}{2\left(-\frac{49}{10}\right)}
Take the square root of \frac{65807}{125}.
t=\frac{0±\frac{7\sqrt{6715}}{25}}{-\frac{49}{5}}
Multiply 2 times -\frac{49}{10}.
t=-\frac{\sqrt{6715}}{35}
Now solve the equation t=\frac{0±\frac{7\sqrt{6715}}{25}}{-\frac{49}{5}} when ± is plus.
t=\frac{\sqrt{6715}}{35}
Now solve the equation t=\frac{0±\frac{7\sqrt{6715}}{25}}{-\frac{49}{5}} when ± is minus.
t=-\frac{\sqrt{6715}}{35} t=\frac{\sqrt{6715}}{35}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}