Solve for x
x=-\frac{156853y}{2888304000000}+\frac{211423}{152016000000}
Solve for y
y=\frac{4017037-2888304000000x}{156853}
Graph
Share
Copied to clipboard
-11553216x-0.627412y=-16.068148
Multiply -12 and 962768 to get -11553216.
-11553216x=-16.068148+0.627412y
Add 0.627412y to both sides.
-11553216x=\frac{156853y-4017037}{250000}
The equation is in standard form.
\frac{-11553216x}{-11553216}=\frac{156853y-4017037}{-11553216\times 250000}
Divide both sides by -11553216.
x=\frac{156853y-4017037}{-11553216\times 250000}
Dividing by -11553216 undoes the multiplication by -11553216.
x=-\frac{156853y}{2888304000000}+\frac{211423}{152016000000}
Divide \frac{-4017037+156853y}{250000} by -11553216.
-11553216x-0.627412y=-16.068148
Multiply -12 and 962768 to get -11553216.
-0.627412y=-16.068148+11553216x
Add 11553216x to both sides.
-0.627412y=11553216x-16.068148
The equation is in standard form.
\frac{-0.627412y}{-0.627412}=\frac{11553216x-16.068148}{-0.627412}
Divide both sides of the equation by -0.627412, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{11553216x-16.068148}{-0.627412}
Dividing by -0.627412 undoes the multiplication by -0.627412.
y=\frac{4017037-2888304000000x}{156853}
Divide -16.068148+11553216x by -0.627412 by multiplying -16.068148+11553216x by the reciprocal of -0.627412.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}