Solve for x
x=-7
x=-4
Graph
Share
Copied to clipboard
-11x-x^{2}=28
Subtract x^{2} from both sides.
-11x-x^{2}-28=0
Subtract 28 from both sides.
-x^{2}-11x-28=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-11 ab=-\left(-28\right)=28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-28. To find a and b, set up a system to be solved.
-1,-28 -2,-14 -4,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 28.
-1-28=-29 -2-14=-16 -4-7=-11
Calculate the sum for each pair.
a=-4 b=-7
The solution is the pair that gives sum -11.
\left(-x^{2}-4x\right)+\left(-7x-28\right)
Rewrite -x^{2}-11x-28 as \left(-x^{2}-4x\right)+\left(-7x-28\right).
x\left(-x-4\right)+7\left(-x-4\right)
Factor out x in the first and 7 in the second group.
\left(-x-4\right)\left(x+7\right)
Factor out common term -x-4 by using distributive property.
x=-4 x=-7
To find equation solutions, solve -x-4=0 and x+7=0.
-11x-x^{2}=28
Subtract x^{2} from both sides.
-11x-x^{2}-28=0
Subtract 28 from both sides.
-x^{2}-11x-28=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-1\right)\left(-28\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -11 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-1\right)\left(-28\right)}}{2\left(-1\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+4\left(-28\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-11\right)±\sqrt{121-112}}{2\left(-1\right)}
Multiply 4 times -28.
x=\frac{-\left(-11\right)±\sqrt{9}}{2\left(-1\right)}
Add 121 to -112.
x=\frac{-\left(-11\right)±3}{2\left(-1\right)}
Take the square root of 9.
x=\frac{11±3}{2\left(-1\right)}
The opposite of -11 is 11.
x=\frac{11±3}{-2}
Multiply 2 times -1.
x=\frac{14}{-2}
Now solve the equation x=\frac{11±3}{-2} when ± is plus. Add 11 to 3.
x=-7
Divide 14 by -2.
x=\frac{8}{-2}
Now solve the equation x=\frac{11±3}{-2} when ± is minus. Subtract 3 from 11.
x=-4
Divide 8 by -2.
x=-7 x=-4
The equation is now solved.
-11x-x^{2}=28
Subtract x^{2} from both sides.
-x^{2}-11x=28
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-11x}{-1}=\frac{28}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{11}{-1}\right)x=\frac{28}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+11x=\frac{28}{-1}
Divide -11 by -1.
x^{2}+11x=-28
Divide 28 by -1.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-28+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=-28+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=\frac{9}{4}
Add -28 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{3}{2} x+\frac{11}{2}=-\frac{3}{2}
Simplify.
x=-4 x=-7
Subtract \frac{11}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}