Solve for x
x=\frac{\sqrt{59}-3}{10}\approx 0.468114575
x=\frac{-\sqrt{59}-3}{10}\approx -1.068114575
Graph
Share
Copied to clipboard
-10x^{2}-6x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-10\right)\times 5}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, -6 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-10\right)\times 5}}{2\left(-10\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+40\times 5}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-\left(-6\right)±\sqrt{36+200}}{2\left(-10\right)}
Multiply 40 times 5.
x=\frac{-\left(-6\right)±\sqrt{236}}{2\left(-10\right)}
Add 36 to 200.
x=\frac{-\left(-6\right)±2\sqrt{59}}{2\left(-10\right)}
Take the square root of 236.
x=\frac{6±2\sqrt{59}}{2\left(-10\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{59}}{-20}
Multiply 2 times -10.
x=\frac{2\sqrt{59}+6}{-20}
Now solve the equation x=\frac{6±2\sqrt{59}}{-20} when ± is plus. Add 6 to 2\sqrt{59}.
x=\frac{-\sqrt{59}-3}{10}
Divide 6+2\sqrt{59} by -20.
x=\frac{6-2\sqrt{59}}{-20}
Now solve the equation x=\frac{6±2\sqrt{59}}{-20} when ± is minus. Subtract 2\sqrt{59} from 6.
x=\frac{\sqrt{59}-3}{10}
Divide 6-2\sqrt{59} by -20.
x=\frac{-\sqrt{59}-3}{10} x=\frac{\sqrt{59}-3}{10}
The equation is now solved.
-10x^{2}-6x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-10x^{2}-6x+5-5=-5
Subtract 5 from both sides of the equation.
-10x^{2}-6x=-5
Subtracting 5 from itself leaves 0.
\frac{-10x^{2}-6x}{-10}=-\frac{5}{-10}
Divide both sides by -10.
x^{2}+\left(-\frac{6}{-10}\right)x=-\frac{5}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}+\frac{3}{5}x=-\frac{5}{-10}
Reduce the fraction \frac{-6}{-10} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{3}{5}x=\frac{1}{2}
Reduce the fraction \frac{-5}{-10} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=\frac{1}{2}+\left(\frac{3}{10}\right)^{2}
Divide \frac{3}{5}, the coefficient of the x term, by 2 to get \frac{3}{10}. Then add the square of \frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{1}{2}+\frac{9}{100}
Square \frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{59}{100}
Add \frac{1}{2} to \frac{9}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{10}\right)^{2}=\frac{59}{100}
Factor x^{2}+\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{59}{100}}
Take the square root of both sides of the equation.
x+\frac{3}{10}=\frac{\sqrt{59}}{10} x+\frac{3}{10}=-\frac{\sqrt{59}}{10}
Simplify.
x=\frac{\sqrt{59}-3}{10} x=\frac{-\sqrt{59}-3}{10}
Subtract \frac{3}{10} from both sides of the equation.
x ^ 2 +\frac{3}{5}x -\frac{1}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{3}{5} rs = -\frac{1}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{3}{10} - u s = -\frac{3}{10} + u
Two numbers r and s sum up to -\frac{3}{5} exactly when the average of the two numbers is \frac{1}{2}*-\frac{3}{5} = -\frac{3}{10}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{3}{10} - u) (-\frac{3}{10} + u) = -\frac{1}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{2}
\frac{9}{100} - u^2 = -\frac{1}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{2}-\frac{9}{100} = -\frac{59}{100}
Simplify the expression by subtracting \frac{9}{100} on both sides
u^2 = \frac{59}{100} u = \pm\sqrt{\frac{59}{100}} = \pm \frac{\sqrt{59}}{10}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{3}{10} - \frac{\sqrt{59}}{10} = -1.068 s = -\frac{3}{10} + \frac{\sqrt{59}}{10} = 0.468
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}