Solve for k
k=-3-\frac{1}{4x^{2}}
x\neq 0
Solve for x (complex solution)
x=-\frac{i\left(k+3\right)^{-\frac{1}{2}}}{2}
x=\frac{i\left(k+3\right)^{-\frac{1}{2}}}{2}\text{, }k\neq -3
Solve for x
x=\frac{\sqrt{-\frac{1}{k+3}}}{2}
x=-\frac{\sqrt{-\frac{1}{k+3}}}{2}\text{, }k<-3
Graph
Share
Copied to clipboard
-1-4kx^{2}-12x^{2}=0
Multiply 4 and -3 to get -12.
-1-4kx^{2}=12x^{2}
Add 12x^{2} to both sides. Anything plus zero gives itself.
-4kx^{2}=12x^{2}+1
Add 1 to both sides.
\left(-4x^{2}\right)k=12x^{2}+1
The equation is in standard form.
\frac{\left(-4x^{2}\right)k}{-4x^{2}}=\frac{12x^{2}+1}{-4x^{2}}
Divide both sides by -4x^{2}.
k=\frac{12x^{2}+1}{-4x^{2}}
Dividing by -4x^{2} undoes the multiplication by -4x^{2}.
k=-3-\frac{1}{4x^{2}}
Divide 12x^{2}+1 by -4x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}