Solve for x
x=0
Graph
Share
Copied to clipboard
15\left(-\frac{1\times 15+1}{15}\right)x=15\times \frac{-16}{-\frac{1\times 15+1}{15}}x
Multiply both sides of the equation by 15.
15\left(-\frac{15+1}{15}\right)x=15\times \frac{-16}{-\frac{1\times 15+1}{15}}x
Multiply 1 and 15 to get 15.
15\left(-\frac{16}{15}\right)x=15\times \frac{-16}{-\frac{1\times 15+1}{15}}x
Add 15 and 1 to get 16.
-16x=15\times \frac{-16}{-\frac{1\times 15+1}{15}}x
Cancel out 15 and 15.
-16x=15\times \frac{-16}{-\frac{15+1}{15}}x
Multiply 1 and 15 to get 15.
-16x=15\times \frac{-16}{-\frac{16}{15}}x
Add 15 and 1 to get 16.
-16x=15\left(-16\right)\left(-\frac{15}{16}\right)x
Divide -16 by -\frac{16}{15} by multiplying -16 by the reciprocal of -\frac{16}{15}.
-16x=15\times 15x
Multiply -16 times -\frac{15}{16}.
-16x=225x
Multiply 15 and 15 to get 225.
-16x-225x=0
Subtract 225x from both sides.
-241x=0
Combine -16x and -225x to get -241x.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -241 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}