Evaluate
-0.5
Factor
-0.5
Share
Copied to clipboard
-1-\left(1-0.5\right)\times \frac{1}{3}\left(1-\left(-2\right)^{2}\right)
Calculate 1 to the power of 4 and get 1.
-1-0.5\times \frac{1}{3}\left(1-\left(-2\right)^{2}\right)
Subtract 0.5 from 1 to get 0.5.
-1-\frac{1}{2}\times \frac{1}{3}\left(1-\left(-2\right)^{2}\right)
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
-1-\frac{1\times 1}{2\times 3}\left(1-\left(-2\right)^{2}\right)
Multiply \frac{1}{2} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
-1-\frac{1}{6}\left(1-\left(-2\right)^{2}\right)
Do the multiplications in the fraction \frac{1\times 1}{2\times 3}.
-1-\frac{1}{6}\left(1-4\right)
Calculate -2 to the power of 2 and get 4.
-1-\frac{1}{6}\left(-3\right)
Subtract 4 from 1 to get -3.
-1-\frac{-3}{6}
Multiply \frac{1}{6} and -3 to get \frac{-3}{6}.
-1-\left(-\frac{1}{2}\right)
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
-1+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
-\frac{2}{2}+\frac{1}{2}
Convert -1 to fraction -\frac{2}{2}.
\frac{-2+1}{2}
Since -\frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
-\frac{1}{2}
Add -2 and 1 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}