Solve for a
a=\frac{\Delta }{4}
\Delta \neq 0
Solve for Δ
\Delta =4a
a\neq 0
Share
Copied to clipboard
-4a=-\Delta
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4a.
\frac{-4a}{-4}=-\frac{\Delta }{-4}
Divide both sides by -4.
a=-\frac{\Delta }{-4}
Dividing by -4 undoes the multiplication by -4.
a=\frac{\Delta }{4}
Divide -\Delta by -4.
a=\frac{\Delta }{4}\text{, }a\neq 0
Variable a cannot be equal to 0.
-4a=-\Delta
Multiply both sides of the equation by 4a.
-\Delta =-4a
Swap sides so that all variable terms are on the left hand side.
\frac{-\Delta }{-1}=-\frac{4a}{-1}
Divide both sides by -1.
\Delta =-\frac{4a}{-1}
Dividing by -1 undoes the multiplication by -1.
\Delta =4a
Divide -4a by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}