Solve for p
p=-\frac{3q-10}{3-q}
q\neq 3
Solve for q
q=-\frac{3p-10}{3-p}
p\neq 3
Share
Copied to clipboard
-1=9-3q-3p+pq
Use the distributive property to multiply 3-p by 3-q.
9-3q-3p+pq=-1
Swap sides so that all variable terms are on the left hand side.
-3q-3p+pq=-1-9
Subtract 9 from both sides.
-3q-3p+pq=-10
Subtract 9 from -1 to get -10.
-3p+pq=-10+3q
Add 3q to both sides.
\left(-3+q\right)p=-10+3q
Combine all terms containing p.
\left(q-3\right)p=3q-10
The equation is in standard form.
\frac{\left(q-3\right)p}{q-3}=\frac{3q-10}{q-3}
Divide both sides by -3+q.
p=\frac{3q-10}{q-3}
Dividing by -3+q undoes the multiplication by -3+q.
-1=9-3q-3p+pq
Use the distributive property to multiply 3-p by 3-q.
9-3q-3p+pq=-1
Swap sides so that all variable terms are on the left hand side.
-3q-3p+pq=-1-9
Subtract 9 from both sides.
-3q-3p+pq=-10
Subtract 9 from -1 to get -10.
-3q+pq=-10+3p
Add 3p to both sides.
\left(-3+p\right)q=-10+3p
Combine all terms containing q.
\left(p-3\right)q=3p-10
The equation is in standard form.
\frac{\left(p-3\right)q}{p-3}=\frac{3p-10}{p-3}
Divide both sides by -3+p.
q=\frac{3p-10}{p-3}
Dividing by -3+p undoes the multiplication by -3+p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}