Solve for x (complex solution)
x=\sqrt{5}-1\approx 1.236067977
x=-\left(\sqrt{5}+1\right)\approx -3.236067977
Solve for x
x=\sqrt{5}-1\approx 1.236067977
x=-\sqrt{5}-1\approx -3.236067977
Graph
Quiz
Quadratic Equation
5 problems similar to:
- 1 = \quad ( 2 ) ( x - 2 ) ( x + 2 ) - ( x + 1 ) ( x - 3 )
Share
Copied to clipboard
-1=\left(2x-4\right)\left(x+2\right)-\left(x+1\right)\left(x-3\right)
Use the distributive property to multiply 2 by x-2.
-1=2x^{2}-8-\left(x+1\right)\left(x-3\right)
Use the distributive property to multiply 2x-4 by x+2 and combine like terms.
-1=2x^{2}-8-\left(x^{2}-2x-3\right)
Use the distributive property to multiply x+1 by x-3 and combine like terms.
-1=2x^{2}-8-x^{2}+2x+3
To find the opposite of x^{2}-2x-3, find the opposite of each term.
-1=x^{2}-8+2x+3
Combine 2x^{2} and -x^{2} to get x^{2}.
-1=x^{2}-5+2x
Add -8 and 3 to get -5.
x^{2}-5+2x=-1
Swap sides so that all variable terms are on the left hand side.
x^{2}-5+2x+1=0
Add 1 to both sides.
x^{2}-4+2x=0
Add -5 and 1 to get -4.
x^{2}+2x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+16}}{2}
Multiply -4 times -4.
x=\frac{-2±\sqrt{20}}{2}
Add 4 to 16.
x=\frac{-2±2\sqrt{5}}{2}
Take the square root of 20.
x=\frac{2\sqrt{5}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{5}}{2} when ± is plus. Add -2 to 2\sqrt{5}.
x=\sqrt{5}-1
Divide -2+2\sqrt{5} by 2.
x=\frac{-2\sqrt{5}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from -2.
x=-\sqrt{5}-1
Divide -2-2\sqrt{5} by 2.
x=\sqrt{5}-1 x=-\sqrt{5}-1
The equation is now solved.
-1=\left(2x-4\right)\left(x+2\right)-\left(x+1\right)\left(x-3\right)
Use the distributive property to multiply 2 by x-2.
-1=2x^{2}-8-\left(x+1\right)\left(x-3\right)
Use the distributive property to multiply 2x-4 by x+2 and combine like terms.
-1=2x^{2}-8-\left(x^{2}-2x-3\right)
Use the distributive property to multiply x+1 by x-3 and combine like terms.
-1=2x^{2}-8-x^{2}+2x+3
To find the opposite of x^{2}-2x-3, find the opposite of each term.
-1=x^{2}-8+2x+3
Combine 2x^{2} and -x^{2} to get x^{2}.
-1=x^{2}-5+2x
Add -8 and 3 to get -5.
x^{2}-5+2x=-1
Swap sides so that all variable terms are on the left hand side.
x^{2}+2x=-1+5
Add 5 to both sides.
x^{2}+2x=4
Add -1 and 5 to get 4.
x^{2}+2x+1^{2}=4+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=4+1
Square 1.
x^{2}+2x+1=5
Add 4 to 1.
\left(x+1\right)^{2}=5
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x+1=\sqrt{5} x+1=-\sqrt{5}
Simplify.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Subtract 1 from both sides of the equation.
-1=\left(2x-4\right)\left(x+2\right)-\left(x+1\right)\left(x-3\right)
Use the distributive property to multiply 2 by x-2.
-1=2x^{2}-8-\left(x+1\right)\left(x-3\right)
Use the distributive property to multiply 2x-4 by x+2 and combine like terms.
-1=2x^{2}-8-\left(x^{2}-2x-3\right)
Use the distributive property to multiply x+1 by x-3 and combine like terms.
-1=2x^{2}-8-x^{2}+2x+3
To find the opposite of x^{2}-2x-3, find the opposite of each term.
-1=x^{2}-8+2x+3
Combine 2x^{2} and -x^{2} to get x^{2}.
-1=x^{2}-5+2x
Add -8 and 3 to get -5.
x^{2}-5+2x=-1
Swap sides so that all variable terms are on the left hand side.
x^{2}-5+2x+1=0
Add 1 to both sides.
x^{2}-4+2x=0
Add -5 and 1 to get -4.
x^{2}+2x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+16}}{2}
Multiply -4 times -4.
x=\frac{-2±\sqrt{20}}{2}
Add 4 to 16.
x=\frac{-2±2\sqrt{5}}{2}
Take the square root of 20.
x=\frac{2\sqrt{5}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{5}}{2} when ± is plus. Add -2 to 2\sqrt{5}.
x=\sqrt{5}-1
Divide -2+2\sqrt{5} by 2.
x=\frac{-2\sqrt{5}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from -2.
x=-\sqrt{5}-1
Divide -2-2\sqrt{5} by 2.
x=\sqrt{5}-1 x=-\sqrt{5}-1
The equation is now solved.
-1=\left(2x-4\right)\left(x+2\right)-\left(x+1\right)\left(x-3\right)
Use the distributive property to multiply 2 by x-2.
-1=2x^{2}-8-\left(x+1\right)\left(x-3\right)
Use the distributive property to multiply 2x-4 by x+2 and combine like terms.
-1=2x^{2}-8-\left(x^{2}-2x-3\right)
Use the distributive property to multiply x+1 by x-3 and combine like terms.
-1=2x^{2}-8-x^{2}+2x+3
To find the opposite of x^{2}-2x-3, find the opposite of each term.
-1=x^{2}-8+2x+3
Combine 2x^{2} and -x^{2} to get x^{2}.
-1=x^{2}-5+2x
Add -8 and 3 to get -5.
x^{2}-5+2x=-1
Swap sides so that all variable terms are on the left hand side.
x^{2}+2x=-1+5
Add 5 to both sides.
x^{2}+2x=4
Add -1 and 5 to get 4.
x^{2}+2x+1^{2}=4+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=4+1
Square 1.
x^{2}+2x+1=5
Add 4 to 1.
\left(x+1\right)^{2}=5
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x+1=\sqrt{5} x+1=-\sqrt{5}
Simplify.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}