Solve for x
x = \frac{\sqrt{624445} + 7555}{846} \approx 9.86432426
x = \frac{7555 - \sqrt{624445}}{846} \approx 7.996195834
Graph
Share
Copied to clipboard
-0.3384x^{2}+6.044x-26.692=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6.044±\sqrt{6.044^{2}-4\left(-0.3384\right)\left(-26.692\right)}}{2\left(-0.3384\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.3384 for a, 6.044 for b, and -26.692 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6.044±\sqrt{36.529936-4\left(-0.3384\right)\left(-26.692\right)}}{2\left(-0.3384\right)}
Square 6.044 by squaring both the numerator and the denominator of the fraction.
x=\frac{-6.044±\sqrt{36.529936+1.3536\left(-26.692\right)}}{2\left(-0.3384\right)}
Multiply -4 times -0.3384.
x=\frac{-6.044±\sqrt{36.529936-36.1302912}}{2\left(-0.3384\right)}
Multiply 1.3536 times -26.692 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-6.044±\sqrt{0.3996448}}{2\left(-0.3384\right)}
Add 36.529936 to -36.1302912 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-6.044±\frac{\sqrt{624445}}{1250}}{2\left(-0.3384\right)}
Take the square root of 0.3996448.
x=\frac{-6.044±\frac{\sqrt{624445}}{1250}}{-0.6768}
Multiply 2 times -0.3384.
x=\frac{\frac{\sqrt{624445}}{1250}-\frac{1511}{250}}{-0.6768}
Now solve the equation x=\frac{-6.044±\frac{\sqrt{624445}}{1250}}{-0.6768} when ± is plus. Add -6.044 to \frac{\sqrt{624445}}{1250}.
x=\frac{7555-\sqrt{624445}}{846}
Divide -\frac{1511}{250}+\frac{\sqrt{624445}}{1250} by -0.6768 by multiplying -\frac{1511}{250}+\frac{\sqrt{624445}}{1250} by the reciprocal of -0.6768.
x=\frac{-\frac{\sqrt{624445}}{1250}-\frac{1511}{250}}{-0.6768}
Now solve the equation x=\frac{-6.044±\frac{\sqrt{624445}}{1250}}{-0.6768} when ± is minus. Subtract \frac{\sqrt{624445}}{1250} from -6.044.
x=\frac{\sqrt{624445}+7555}{846}
Divide -\frac{1511}{250}-\frac{\sqrt{624445}}{1250} by -0.6768 by multiplying -\frac{1511}{250}-\frac{\sqrt{624445}}{1250} by the reciprocal of -0.6768.
x=\frac{7555-\sqrt{624445}}{846} x=\frac{\sqrt{624445}+7555}{846}
The equation is now solved.
-0.3384x^{2}+6.044x-26.692=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-0.3384x^{2}+6.044x-26.692-\left(-26.692\right)=-\left(-26.692\right)
Add 26.692 to both sides of the equation.
-0.3384x^{2}+6.044x=-\left(-26.692\right)
Subtracting -26.692 from itself leaves 0.
-0.3384x^{2}+6.044x=26.692
Subtract -26.692 from 0.
\frac{-0.3384x^{2}+6.044x}{-0.3384}=\frac{26.692}{-0.3384}
Divide both sides of the equation by -0.3384, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{6.044}{-0.3384}x=\frac{26.692}{-0.3384}
Dividing by -0.3384 undoes the multiplication by -0.3384.
x^{2}-\frac{7555}{423}x=\frac{26.692}{-0.3384}
Divide 6.044 by -0.3384 by multiplying 6.044 by the reciprocal of -0.3384.
x^{2}-\frac{7555}{423}x=-\frac{33365}{423}
Divide 26.692 by -0.3384 by multiplying 26.692 by the reciprocal of -0.3384.
x^{2}-\frac{7555}{423}x+\left(-\frac{7555}{846}\right)^{2}=-\frac{33365}{423}+\left(-\frac{7555}{846}\right)^{2}
Divide -\frac{7555}{423}, the coefficient of the x term, by 2 to get -\frac{7555}{846}. Then add the square of -\frac{7555}{846} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7555}{423}x+\frac{57078025}{715716}=-\frac{33365}{423}+\frac{57078025}{715716}
Square -\frac{7555}{846} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7555}{423}x+\frac{57078025}{715716}=\frac{624445}{715716}
Add -\frac{33365}{423} to \frac{57078025}{715716} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7555}{846}\right)^{2}=\frac{624445}{715716}
Factor x^{2}-\frac{7555}{423}x+\frac{57078025}{715716}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7555}{846}\right)^{2}}=\sqrt{\frac{624445}{715716}}
Take the square root of both sides of the equation.
x-\frac{7555}{846}=\frac{\sqrt{624445}}{846} x-\frac{7555}{846}=-\frac{\sqrt{624445}}{846}
Simplify.
x=\frac{\sqrt{624445}+7555}{846} x=\frac{7555-\sqrt{624445}}{846}
Add \frac{7555}{846} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}