Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{-2x+y-5}{y}\text{, }&y\neq 0\\k\in \mathrm{C}\text{, }&x=-\frac{5}{2}\text{ and }y=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{-2x+y-5}{y}\text{, }&y\neq 0\\k\in \mathrm{R}\text{, }&x=-\frac{5}{2}\text{ and }y=0\end{matrix}\right.
Solve for x
x=\frac{-ky+y-5}{2}
Graph
Share
Copied to clipboard
\left(-k+1\right)y=2x+5
To find the opposite of k-1, find the opposite of each term.
-ky+y=2x+5
Use the distributive property to multiply -k+1 by y.
-ky=2x+5-y
Subtract y from both sides.
\left(-y\right)k=2x-y+5
The equation is in standard form.
\frac{\left(-y\right)k}{-y}=\frac{2x-y+5}{-y}
Divide both sides by -y.
k=\frac{2x-y+5}{-y}
Dividing by -y undoes the multiplication by -y.
k=-\frac{2x+5}{y}+1
Divide 2x+5-y by -y.
\left(-k+1\right)y=2x+5
To find the opposite of k-1, find the opposite of each term.
-ky+y=2x+5
Use the distributive property to multiply -k+1 by y.
-ky=2x+5-y
Subtract y from both sides.
\left(-y\right)k=2x-y+5
The equation is in standard form.
\frac{\left(-y\right)k}{-y}=\frac{2x-y+5}{-y}
Divide both sides by -y.
k=\frac{2x-y+5}{-y}
Dividing by -y undoes the multiplication by -y.
k=-\frac{2x+5}{y}+1
Divide 2x+5-y by -y.
\left(-k+1\right)y=2x+5
To find the opposite of k-1, find the opposite of each term.
-ky+y=2x+5
Use the distributive property to multiply -k+1 by y.
2x+5=-ky+y
Swap sides so that all variable terms are on the left hand side.
2x=-ky+y-5
Subtract 5 from both sides.
\frac{2x}{2}=\frac{-ky+y-5}{2}
Divide both sides by 2.
x=\frac{-ky+y-5}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}