Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\left(8x+3\right)=3x^{2}\times 4-6
Multiply x and x to get x^{2}.
-8x-3=3x^{2}\times 4-6
To find the opposite of 8x+3, find the opposite of each term.
-8x-3=12x^{2}-6
Multiply 3 and 4 to get 12.
-8x-3-12x^{2}=-6
Subtract 12x^{2} from both sides.
-8x-3-12x^{2}+6=0
Add 6 to both sides.
-8x+3-12x^{2}=0
Add -3 and 6 to get 3.
-12x^{2}-8x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-12\right)\times 3}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, -8 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-12\right)\times 3}}{2\left(-12\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+48\times 3}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-\left(-8\right)±\sqrt{64+144}}{2\left(-12\right)}
Multiply 48 times 3.
x=\frac{-\left(-8\right)±\sqrt{208}}{2\left(-12\right)}
Add 64 to 144.
x=\frac{-\left(-8\right)±4\sqrt{13}}{2\left(-12\right)}
Take the square root of 208.
x=\frac{8±4\sqrt{13}}{2\left(-12\right)}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{13}}{-24}
Multiply 2 times -12.
x=\frac{4\sqrt{13}+8}{-24}
Now solve the equation x=\frac{8±4\sqrt{13}}{-24} when ± is plus. Add 8 to 4\sqrt{13}.
x=-\frac{\sqrt{13}}{6}-\frac{1}{3}
Divide 8+4\sqrt{13} by -24.
x=\frac{8-4\sqrt{13}}{-24}
Now solve the equation x=\frac{8±4\sqrt{13}}{-24} when ± is minus. Subtract 4\sqrt{13} from 8.
x=\frac{\sqrt{13}}{6}-\frac{1}{3}
Divide 8-4\sqrt{13} by -24.
x=-\frac{\sqrt{13}}{6}-\frac{1}{3} x=\frac{\sqrt{13}}{6}-\frac{1}{3}
The equation is now solved.
-\left(8x+3\right)=3x^{2}\times 4-6
Multiply x and x to get x^{2}.
-8x-3=3x^{2}\times 4-6
To find the opposite of 8x+3, find the opposite of each term.
-8x-3=12x^{2}-6
Multiply 3 and 4 to get 12.
-8x-3-12x^{2}=-6
Subtract 12x^{2} from both sides.
-8x-12x^{2}=-6+3
Add 3 to both sides.
-8x-12x^{2}=-3
Add -6 and 3 to get -3.
-12x^{2}-8x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-12x^{2}-8x}{-12}=-\frac{3}{-12}
Divide both sides by -12.
x^{2}+\left(-\frac{8}{-12}\right)x=-\frac{3}{-12}
Dividing by -12 undoes the multiplication by -12.
x^{2}+\frac{2}{3}x=-\frac{3}{-12}
Reduce the fraction \frac{-8}{-12} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{2}{3}x=\frac{1}{4}
Reduce the fraction \frac{-3}{-12} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{1}{4}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{4}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{13}{36}
Add \frac{1}{4} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{13}{36}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{13}{36}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{13}}{6} x+\frac{1}{3}=-\frac{\sqrt{13}}{6}
Simplify.
x=\frac{\sqrt{13}}{6}-\frac{1}{3} x=-\frac{\sqrt{13}}{6}-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.