Solve for n
n=\frac{\left(N+2\right)^{2}-14}{4}
Solve for N (complex solution)
N=-\sqrt{4n+14}-2
N=\sqrt{4n+14}-2
Solve for N
N=-\sqrt{4n+14}-2
N=\sqrt{4n+14}-2\text{, }n\geq -\frac{7}{2}
Share
Copied to clipboard
-\left(4+4N+N^{2}\right)+4\left(2+n\right)=-6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+N\right)^{2}.
-4-4N-N^{2}+4\left(2+n\right)=-6
To find the opposite of 4+4N+N^{2}, find the opposite of each term.
-4-4N-N^{2}+8+4n=-6
Use the distributive property to multiply 4 by 2+n.
4-4N-N^{2}+4n=-6
Add -4 and 8 to get 4.
-4N-N^{2}+4n=-6-4
Subtract 4 from both sides.
-4N-N^{2}+4n=-10
Subtract 4 from -6 to get -10.
-N^{2}+4n=-10+4N
Add 4N to both sides.
4n=-10+4N+N^{2}
Add N^{2} to both sides.
4n=N^{2}+4N-10
The equation is in standard form.
\frac{4n}{4}=\frac{N^{2}+4N-10}{4}
Divide both sides by 4.
n=\frac{N^{2}+4N-10}{4}
Dividing by 4 undoes the multiplication by 4.
n=\frac{N^{2}}{4}+N-\frac{5}{2}
Divide -10+4N+N^{2} by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}