Solve for p
p=1
Share
Copied to clipboard
-1-\left(-p\right)=-\left(2p-2\right)
To find the opposite of 1-p, find the opposite of each term.
-1+p=-\left(2p-2\right)
The opposite of -p is p.
-1+p=-2p-\left(-2\right)
To find the opposite of 2p-2, find the opposite of each term.
-1+p=-2p+2
The opposite of -2 is 2.
-1+p+2p=2
Add 2p to both sides.
-1+3p=2
Combine p and 2p to get 3p.
3p=2+1
Add 1 to both sides.
3p=3
Add 2 and 1 to get 3.
p=\frac{3}{3}
Divide both sides by 3.
p=1
Divide 3 by 3 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}