Evaluate
29-72a+49a^{2}-20a^{4}+60a^{5}-45a^{6}
Expand
29-72a+49a^{2}-20a^{4}+60a^{5}-45a^{6}
Share
Copied to clipboard
\left(-1+a\right)\left(1+a\right)\left(1+a^{2}\right)\times 5\left(3a-2\right)\left(2-3a\right)-\left(2a-3\right)\left(3-2a\right)
To find the opposite of 1-a, find the opposite of each term.
\left(-1+a^{2}\right)\left(1+a^{2}\right)\times 5\left(3a-2\right)\left(2-3a\right)-\left(2a-3\right)\left(3-2a\right)
Use the distributive property to multiply -1+a by 1+a and combine like terms.
\left(-1+a^{4}\right)\times 5\left(3a-2\right)\left(2-3a\right)-\left(2a-3\right)\left(3-2a\right)
Use the distributive property to multiply -1+a^{2} by 1+a^{2} and combine like terms.
\left(-5+5a^{4}\right)\left(3a-2\right)\left(2-3a\right)-\left(2a-3\right)\left(3-2a\right)
Use the distributive property to multiply -1+a^{4} by 5.
\left(-15a+10+15a^{5}-10a^{4}\right)\left(2-3a\right)-\left(2a-3\right)\left(3-2a\right)
Use the distributive property to multiply -5+5a^{4} by 3a-2.
-60a+45a^{2}+20+60a^{5}-45a^{6}-20a^{4}-\left(2a-3\right)\left(3-2a\right)
Use the distributive property to multiply -15a+10+15a^{5}-10a^{4} by 2-3a and combine like terms.
-60a+45a^{2}+20+60a^{5}-45a^{6}-20a^{4}-\left(12a-4a^{2}-9\right)
Use the distributive property to multiply 2a-3 by 3-2a and combine like terms.
-60a+45a^{2}+20+60a^{5}-45a^{6}-20a^{4}-12a+4a^{2}+9
To find the opposite of 12a-4a^{2}-9, find the opposite of each term.
-72a+45a^{2}+20+60a^{5}-45a^{6}-20a^{4}+4a^{2}+9
Combine -60a and -12a to get -72a.
-72a+49a^{2}+20+60a^{5}-45a^{6}-20a^{4}+9
Combine 45a^{2} and 4a^{2} to get 49a^{2}.
-72a+49a^{2}+29+60a^{5}-45a^{6}-20a^{4}
Add 20 and 9 to get 29.
\left(-1+a\right)\left(1+a\right)\left(1+a^{2}\right)\times 5\left(3a-2\right)\left(2-3a\right)-\left(2a-3\right)\left(3-2a\right)
To find the opposite of 1-a, find the opposite of each term.
\left(-1+a^{2}\right)\left(1+a^{2}\right)\times 5\left(3a-2\right)\left(2-3a\right)-\left(2a-3\right)\left(3-2a\right)
Use the distributive property to multiply -1+a by 1+a and combine like terms.
\left(-1+a^{4}\right)\times 5\left(3a-2\right)\left(2-3a\right)-\left(2a-3\right)\left(3-2a\right)
Use the distributive property to multiply -1+a^{2} by 1+a^{2} and combine like terms.
\left(-5+5a^{4}\right)\left(3a-2\right)\left(2-3a\right)-\left(2a-3\right)\left(3-2a\right)
Use the distributive property to multiply -1+a^{4} by 5.
\left(-15a+10+15a^{5}-10a^{4}\right)\left(2-3a\right)-\left(2a-3\right)\left(3-2a\right)
Use the distributive property to multiply -5+5a^{4} by 3a-2.
-60a+45a^{2}+20+60a^{5}-45a^{6}-20a^{4}-\left(2a-3\right)\left(3-2a\right)
Use the distributive property to multiply -15a+10+15a^{5}-10a^{4} by 2-3a and combine like terms.
-60a+45a^{2}+20+60a^{5}-45a^{6}-20a^{4}-\left(12a-4a^{2}-9\right)
Use the distributive property to multiply 2a-3 by 3-2a and combine like terms.
-60a+45a^{2}+20+60a^{5}-45a^{6}-20a^{4}-12a+4a^{2}+9
To find the opposite of 12a-4a^{2}-9, find the opposite of each term.
-72a+45a^{2}+20+60a^{5}-45a^{6}-20a^{4}+4a^{2}+9
Combine -60a and -12a to get -72a.
-72a+49a^{2}+20+60a^{5}-45a^{6}-20a^{4}+9
Combine 45a^{2} and 4a^{2} to get 49a^{2}.
-72a+49a^{2}+29+60a^{5}-45a^{6}-20a^{4}
Add 20 and 9 to get 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}