Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-\sqrt{2}-\sqrt{3}-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
To find the opposite of \sqrt{2}+\sqrt{3}, find the opposite of each term.
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\left(\sqrt{2}+3\sqrt{3}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\sqrt{2}-\frac{3}{4}\times 3\sqrt{3}
Use the distributive property to multiply -\frac{3}{4} by \sqrt{2}+3\sqrt{3}.
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\sqrt{2}+\frac{-3\times 3}{4}\sqrt{3}
Express -\frac{3}{4}\times 3 as a single fraction.
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\sqrt{2}+\frac{-9}{4}\sqrt{3}
Multiply -3 and 3 to get -9.
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\sqrt{2}-\frac{9}{4}\sqrt{3}
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
-\frac{7}{4}\sqrt{2}-\sqrt{3}-\frac{9}{4}\sqrt{3}
Combine -\sqrt{2} and -\frac{3}{4}\sqrt{2} to get -\frac{7}{4}\sqrt{2}.
-\frac{7}{4}\sqrt{2}-\frac{13}{4}\sqrt{3}
Combine -\sqrt{3} and -\frac{9}{4}\sqrt{3} to get -\frac{13}{4}\sqrt{3}.