Evaluate
\frac{-7\sqrt{2}-13\sqrt{3}}{4}\approx -8.104038859
Factor
\frac{-7 \sqrt{2} - 13 \sqrt{3}}{4} = -8.104038858751768
Share
Copied to clipboard
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\left(\sqrt{2}+\sqrt{27}\right)
To find the opposite of \sqrt{2}+\sqrt{3}, find the opposite of each term.
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\left(\sqrt{2}+3\sqrt{3}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\sqrt{2}-\frac{3}{4}\times 3\sqrt{3}
Use the distributive property to multiply -\frac{3}{4} by \sqrt{2}+3\sqrt{3}.
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\sqrt{2}+\frac{-3\times 3}{4}\sqrt{3}
Express -\frac{3}{4}\times 3 as a single fraction.
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\sqrt{2}+\frac{-9}{4}\sqrt{3}
Multiply -3 and 3 to get -9.
-\sqrt{2}-\sqrt{3}-\frac{3}{4}\sqrt{2}-\frac{9}{4}\sqrt{3}
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
-\frac{7}{4}\sqrt{2}-\sqrt{3}-\frac{9}{4}\sqrt{3}
Combine -\sqrt{2} and -\frac{3}{4}\sqrt{2} to get -\frac{7}{4}\sqrt{2}.
-\frac{7}{4}\sqrt{2}-\frac{13}{4}\sqrt{3}
Combine -\sqrt{3} and -\frac{9}{4}\sqrt{3} to get -\frac{13}{4}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}