Evaluate
-\frac{3}{5}=-0.6
Factor
-\frac{3}{5} = -0.6
Share
Copied to clipboard
\left(-\frac{3\times 4}{2}\right)\times \frac{\frac{1}{6}}{\frac{1}{2}}\times \frac{3}{10}
Express \frac{3}{2}\times 4 as a single fraction.
\left(-\frac{12}{2}\right)\times \frac{\frac{1}{6}}{\frac{1}{2}}\times \frac{3}{10}
Multiply 3 and 4 to get 12.
-6\times \frac{\frac{1}{6}}{\frac{1}{2}}\times \frac{3}{10}
Divide 12 by 2 to get 6.
-6\times \frac{1}{6}\times 2\times \frac{3}{10}
Divide \frac{1}{6} by \frac{1}{2} by multiplying \frac{1}{6} by the reciprocal of \frac{1}{2}.
-6\times \frac{2}{6}\times \frac{3}{10}
Multiply \frac{1}{6} and 2 to get \frac{2}{6}.
-6\times \frac{1}{3}\times \frac{3}{10}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{-6}{3}\times \frac{3}{10}
Multiply -6 and \frac{1}{3} to get \frac{-6}{3}.
-2\times \frac{3}{10}
Divide -6 by 3 to get -2.
\frac{-2\times 3}{10}
Express -2\times \frac{3}{10} as a single fraction.
\frac{-6}{10}
Multiply -2 and 3 to get -6.
-\frac{3}{5}
Reduce the fraction \frac{-6}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}