Evaluate
-\frac{1}{4}=-0.25
Factor
-\frac{1}{4} = -0.25
Share
Copied to clipboard
\left(-\left(3-\frac{12}{5}\right)\right)\left(\frac{1}{3}+\frac{1}{12}\right)
Anything divided by one gives itself.
\left(-\left(\frac{15}{5}-\frac{12}{5}\right)\right)\left(\frac{1}{3}+\frac{1}{12}\right)
Convert 3 to fraction \frac{15}{5}.
\left(-\frac{15-12}{5}\right)\left(\frac{1}{3}+\frac{1}{12}\right)
Since \frac{15}{5} and \frac{12}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{5}\left(\frac{1}{3}+\frac{1}{12}\right)
Subtract 12 from 15 to get 3.
-\frac{3}{5}\left(\frac{4}{12}+\frac{1}{12}\right)
Least common multiple of 3 and 12 is 12. Convert \frac{1}{3} and \frac{1}{12} to fractions with denominator 12.
-\frac{3}{5}\times \frac{4+1}{12}
Since \frac{4}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
-\frac{3}{5}\times \frac{5}{12}
Add 4 and 1 to get 5.
\frac{-3\times 5}{5\times 12}
Multiply -\frac{3}{5} times \frac{5}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{12}
Cancel out 5 in both numerator and denominator.
-\frac{1}{4}
Reduce the fraction \frac{-3}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}