Solve for h
h=\frac{3}{2}-6x
Solve for x
x=-\frac{h}{6}+\frac{1}{4}
Graph
Share
Copied to clipboard
-24x-4h=-6
Multiply both sides of the equation by 2.
-4h=-6+24x
Add 24x to both sides.
-4h=24x-6
The equation is in standard form.
\frac{-4h}{-4}=\frac{24x-6}{-4}
Divide both sides by -4.
h=\frac{24x-6}{-4}
Dividing by -4 undoes the multiplication by -4.
h=\frac{3}{2}-6x
Divide -6+24x by -4.
-24x-4h=-6
Multiply both sides of the equation by 2.
-24x=-6+4h
Add 4h to both sides.
-24x=4h-6
The equation is in standard form.
\frac{-24x}{-24}=\frac{4h-6}{-24}
Divide both sides by -24.
x=\frac{4h-6}{-24}
Dividing by -24 undoes the multiplication by -24.
x=-\frac{h}{6}+\frac{1}{4}
Divide -6+4h by -24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}