Evaluate
\frac{x^{3}+x^{2}-15x-14}{\left(x+1\right)\left(x+2\right)}
Expand
\frac{x^{3}+x^{2}-15x-14}{\left(x+1\right)\left(x+2\right)}
Graph
Share
Copied to clipboard
-\left(\frac{12}{x+2}+\frac{\left(-x+2\right)\left(x+2\right)}{x+2}\right)+\frac{1}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+2 times \frac{x+2}{x+2}.
-\frac{12+\left(-x+2\right)\left(x+2\right)}{x+2}+\frac{1}{x+1}
Since \frac{12}{x+2} and \frac{\left(-x+2\right)\left(x+2\right)}{x+2} have the same denominator, add them by adding their numerators.
-\frac{12-x^{2}-2x+2x+4}{x+2}+\frac{1}{x+1}
Do the multiplications in 12+\left(-x+2\right)\left(x+2\right).
-\frac{16-x^{2}}{x+2}+\frac{1}{x+1}
Combine like terms in 12-x^{2}-2x+2x+4.
-\frac{\left(16-x^{2}\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+\frac{x+2}{\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x+1 is \left(x+1\right)\left(x+2\right). Multiply -\frac{16-x^{2}}{x+2} times \frac{x+1}{x+1}. Multiply \frac{1}{x+1} times \frac{x+2}{x+2}.
\frac{-\left(16-x^{2}\right)\left(x+1\right)+x+2}{\left(x+1\right)\left(x+2\right)}
Since -\frac{\left(16-x^{2}\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} and \frac{x+2}{\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-16x-16+x^{3}+x^{2}+x+2}{\left(x+1\right)\left(x+2\right)}
Do the multiplications in -\left(16-x^{2}\right)\left(x+1\right)+x+2.
\frac{-15x-14+x^{3}+x^{2}}{\left(x+1\right)\left(x+2\right)}
Combine like terms in -16x-16+x^{3}+x^{2}+x+2.
\frac{-15x-14+x^{3}+x^{2}}{x^{2}+3x+2}
Expand \left(x+1\right)\left(x+2\right).
-\left(\frac{12}{x+2}+\frac{\left(-x+2\right)\left(x+2\right)}{x+2}\right)+\frac{1}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+2 times \frac{x+2}{x+2}.
-\frac{12+\left(-x+2\right)\left(x+2\right)}{x+2}+\frac{1}{x+1}
Since \frac{12}{x+2} and \frac{\left(-x+2\right)\left(x+2\right)}{x+2} have the same denominator, add them by adding their numerators.
-\frac{12-x^{2}-2x+2x+4}{x+2}+\frac{1}{x+1}
Do the multiplications in 12+\left(-x+2\right)\left(x+2\right).
-\frac{16-x^{2}}{x+2}+\frac{1}{x+1}
Combine like terms in 12-x^{2}-2x+2x+4.
-\frac{\left(16-x^{2}\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+\frac{x+2}{\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x+1 is \left(x+1\right)\left(x+2\right). Multiply -\frac{16-x^{2}}{x+2} times \frac{x+1}{x+1}. Multiply \frac{1}{x+1} times \frac{x+2}{x+2}.
\frac{-\left(16-x^{2}\right)\left(x+1\right)+x+2}{\left(x+1\right)\left(x+2\right)}
Since -\frac{\left(16-x^{2}\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} and \frac{x+2}{\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-16x-16+x^{3}+x^{2}+x+2}{\left(x+1\right)\left(x+2\right)}
Do the multiplications in -\left(16-x^{2}\right)\left(x+1\right)+x+2.
\frac{-15x-14+x^{3}+x^{2}}{\left(x+1\right)\left(x+2\right)}
Combine like terms in -16x-16+x^{3}+x^{2}+x+2.
\frac{-15x-14+x^{3}+x^{2}}{x^{2}+3x+2}
Expand \left(x+1\right)\left(x+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}