Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{8}{3}a^{3}b^{2}\right)\left(-\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}b^{2}-\frac{1}{32}ab\times \left(4a^{2}b\right)^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Expand \left(-\frac{1}{4}a^{2}b\right)^{2}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\left(-\frac{1}{4}\right)^{2}a^{4}b^{2}-\frac{1}{32}ab\times \left(4a^{2}b\right)^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-\frac{1}{32}ab\times \left(4a^{2}b\right)^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-\frac{1}{32}ab\times 4^{3}\left(a^{2}\right)^{3}b^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Expand \left(4a^{2}b\right)^{3}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-\frac{1}{32}ab\times 4^{3}a^{6}b^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-\frac{1}{32}ab\times 64a^{6}b^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Calculate 4 to the power of 3 and get 64.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2aba^{6}b^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Multiply \frac{1}{32} and 64 to get 2.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}bb^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+a\left(-a^{3}\right)^{2}b^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Expand \left(\left(-a^{3}\right)b\right)^{2}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+a\left(a^{3}\right)^{2}b^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Calculate -a^{3} to the power of 2 and get \left(a^{3}\right)^{2}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+a\left(a^{3}\right)^{2}b^{4}\left(-\frac{1}{4}\right)+2a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+aa^{6}b^{4}\left(-\frac{1}{4}\right)+2a^{7}b^{4}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+a^{7}b^{4}\left(-\frac{1}{4}\right)+2a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
Combine a^{7}b^{4}\left(-\frac{1}{4}\right) and 2a^{7}b^{4} to get \frac{7}{4}a^{7}b^{4}.
-\frac{8}{3}a^{3}b^{2}\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
Multiply -1 and \frac{8}{3} to get -\frac{8}{3}.
-\frac{1}{6}a^{3}b^{2}a^{4}b^{2}-2a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
Multiply -\frac{8}{3} and \frac{1}{16} to get -\frac{1}{6}.
-\frac{1}{6}a^{7}b^{2}b^{2}-2a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 3 and 4 to get 7.
-\frac{1}{6}a^{7}b^{4}-2a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-\frac{13}{6}a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
Combine -\frac{1}{6}a^{7}b^{4} and -2a^{7}b^{4} to get -\frac{13}{6}a^{7}b^{4}.
-\frac{5}{12}a^{7}b^{4}
Combine -\frac{13}{6}a^{7}b^{4} and \frac{7}{4}a^{7}b^{4} to get -\frac{5}{12}a^{7}b^{4}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\left(-\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}b^{2}-\frac{1}{32}ab\times \left(4a^{2}b\right)^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Expand \left(-\frac{1}{4}a^{2}b\right)^{2}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\left(-\frac{1}{4}\right)^{2}a^{4}b^{2}-\frac{1}{32}ab\times \left(4a^{2}b\right)^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-\frac{1}{32}ab\times \left(4a^{2}b\right)^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-\frac{1}{32}ab\times 4^{3}\left(a^{2}\right)^{3}b^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Expand \left(4a^{2}b\right)^{3}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-\frac{1}{32}ab\times 4^{3}a^{6}b^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-\frac{1}{32}ab\times 64a^{6}b^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Calculate 4 to the power of 3 and get 64.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2aba^{6}b^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Multiply \frac{1}{32} and 64 to get 2.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}bb^{3}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+a\left(\left(-a^{3}\right)b\right)^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+a\left(-a^{3}\right)^{2}b^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Expand \left(\left(-a^{3}\right)b\right)^{2}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+a\left(a^{3}\right)^{2}b^{2}\left(-\frac{1}{4}\right)b^{2}+2a^{7}b^{4}
Calculate -a^{3} to the power of 2 and get \left(a^{3}\right)^{2}.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+a\left(a^{3}\right)^{2}b^{4}\left(-\frac{1}{4}\right)+2a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+aa^{6}b^{4}\left(-\frac{1}{4}\right)+2a^{7}b^{4}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+a^{7}b^{4}\left(-\frac{1}{4}\right)+2a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
\left(-\frac{8}{3}a^{3}b^{2}\right)\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
Combine a^{7}b^{4}\left(-\frac{1}{4}\right) and 2a^{7}b^{4} to get \frac{7}{4}a^{7}b^{4}.
-\frac{8}{3}a^{3}b^{2}\times \frac{1}{16}a^{4}b^{2}-2a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
Multiply -1 and \frac{8}{3} to get -\frac{8}{3}.
-\frac{1}{6}a^{3}b^{2}a^{4}b^{2}-2a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
Multiply -\frac{8}{3} and \frac{1}{16} to get -\frac{1}{6}.
-\frac{1}{6}a^{7}b^{2}b^{2}-2a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 3 and 4 to get 7.
-\frac{1}{6}a^{7}b^{4}-2a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-\frac{13}{6}a^{7}b^{4}+\frac{7}{4}a^{7}b^{4}
Combine -\frac{1}{6}a^{7}b^{4} and -2a^{7}b^{4} to get -\frac{13}{6}a^{7}b^{4}.
-\frac{5}{12}a^{7}b^{4}
Combine -\frac{13}{6}a^{7}b^{4} and \frac{7}{4}a^{7}b^{4} to get -\frac{5}{12}a^{7}b^{4}.