Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-x^{3}}{-40}x^{20}\left(-15\right)
To multiply powers of the same base, add their exponents. Add 14 and 6 to get 20.
\frac{\left(-x^{3}\right)x^{20}}{-40}\left(-15\right)
Express \frac{-x^{3}}{-40}x^{20} as a single fraction.
\frac{-\left(-x^{3}\right)x^{20}\times 15}{-40}
Express \frac{\left(-x^{3}\right)x^{20}}{-40}\left(-15\right) as a single fraction.
\frac{-15\left(-x^{3}\right)x^{20}}{-40}
Multiply -1 and 15 to get -15.
\frac{15x^{3}x^{20}}{-40}
Multiply -15 and -1 to get 15.
\frac{15x^{23}}{-40}
To multiply powers of the same base, add their exponents. Add 3 and 20 to get 23.
-\frac{3}{8}x^{23}
Divide 15x^{23} by -40 to get -\frac{3}{8}x^{23}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x^{3}}{-40}x^{20}\left(-15\right))
To multiply powers of the same base, add their exponents. Add 14 and 6 to get 20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(-x^{3}\right)x^{20}}{-40}\left(-15\right))
Express \frac{-x^{3}}{-40}x^{20} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\left(-x^{3}\right)x^{20}\times 15}{-40})
Express \frac{\left(-x^{3}\right)x^{20}}{-40}\left(-15\right) as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-15\left(-x^{3}\right)x^{20}}{-40})
Multiply -1 and 15 to get -15.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{15x^{3}x^{20}}{-40})
Multiply -15 and -1 to get 15.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{15x^{23}}{-40})
To multiply powers of the same base, add their exponents. Add 3 and 20 to get 23.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{3}{8}x^{23})
Divide 15x^{23} by -40 to get -\frac{3}{8}x^{23}.
23\left(-\frac{3}{8}\right)x^{23-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{69}{8}x^{23-1}
Multiply 23 times -\frac{3}{8}.
-\frac{69}{8}x^{22}
Subtract 1 from 23.