Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-1 ab=-42=-42
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+42. To find a and b, set up a system to be solved.
1,-42 2,-21 3,-14 6,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -42.
1-42=-41 2-21=-19 3-14=-11 6-7=-1
Calculate the sum for each pair.
a=6 b=-7
The solution is the pair that gives sum -1.
\left(-x^{2}+6x\right)+\left(-7x+42\right)
Rewrite -x^{2}-x+42 as \left(-x^{2}+6x\right)+\left(-7x+42\right).
x\left(-x+6\right)+7\left(-x+6\right)
Factor out x in the first and 7 in the second group.
\left(-x+6\right)\left(x+7\right)
Factor out common term -x+6 by using distributive property.
-x^{2}-x+42=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 42}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 42}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1+168}}{2\left(-1\right)}
Multiply 4 times 42.
x=\frac{-\left(-1\right)±\sqrt{169}}{2\left(-1\right)}
Add 1 to 168.
x=\frac{-\left(-1\right)±13}{2\left(-1\right)}
Take the square root of 169.
x=\frac{1±13}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±13}{-2}
Multiply 2 times -1.
x=\frac{14}{-2}
Now solve the equation x=\frac{1±13}{-2} when ± is plus. Add 1 to 13.
x=-7
Divide 14 by -2.
x=-\frac{12}{-2}
Now solve the equation x=\frac{1±13}{-2} when ± is minus. Subtract 13 from 1.
x=6
Divide -12 by -2.
-x^{2}-x+42=-\left(x-\left(-7\right)\right)\left(x-6\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -7 for x_{1} and 6 for x_{2}.
-x^{2}-x+42=-\left(x+7\right)\left(x-6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.