Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}=8.8
Add 8.8 to both sides. Anything plus zero gives itself.
x^{2}=\frac{8.8}{-1}
Divide both sides by -1.
x^{2}=\frac{88}{-10}
Expand \frac{8.8}{-1} by multiplying both numerator and the denominator by 10.
x^{2}=-\frac{44}{5}
Reduce the fraction \frac{88}{-10} to lowest terms by extracting and canceling out 2.
x=\frac{2\sqrt{55}i}{5} x=-\frac{2\sqrt{55}i}{5}
The equation is now solved.
-x^{2}-8.8=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-8.8\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -8.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-8.8\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-8.8\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-35.2}}{2\left(-1\right)}
Multiply 4 times -8.8.
x=\frac{0±\frac{4\sqrt{55}i}{5}}{2\left(-1\right)}
Take the square root of -35.2.
x=\frac{0±\frac{4\sqrt{55}i}{5}}{-2}
Multiply 2 times -1.
x=-\frac{2\sqrt{55}i}{5}
Now solve the equation x=\frac{0±\frac{4\sqrt{55}i}{5}}{-2} when ± is plus.
x=\frac{2\sqrt{55}i}{5}
Now solve the equation x=\frac{0±\frac{4\sqrt{55}i}{5}}{-2} when ± is minus.
x=-\frac{2\sqrt{55}i}{5} x=\frac{2\sqrt{55}i}{5}
The equation is now solved.