Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-6x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -6 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 8}}{2\left(-1\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 8}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-6\right)±\sqrt{36+32}}{2\left(-1\right)}
Multiply 4 times 8.
x=\frac{-\left(-6\right)±\sqrt{68}}{2\left(-1\right)}
Add 36 to 32.
x=\frac{-\left(-6\right)±2\sqrt{17}}{2\left(-1\right)}
Take the square root of 68.
x=\frac{6±2\sqrt{17}}{2\left(-1\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{17}+6}{-2}
Now solve the equation x=\frac{6±2\sqrt{17}}{-2} when ± is plus. Add 6 to 2\sqrt{17}.
x=-\left(\sqrt{17}+3\right)
Divide 6+2\sqrt{17} by -2.
x=\frac{6-2\sqrt{17}}{-2}
Now solve the equation x=\frac{6±2\sqrt{17}}{-2} when ± is minus. Subtract 2\sqrt{17} from 6.
x=\sqrt{17}-3
Divide 6-2\sqrt{17} by -2.
x=-\left(\sqrt{17}+3\right) x=\sqrt{17}-3
The equation is now solved.
-x^{2}-6x+8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-6x+8-8=-8
Subtract 8 from both sides of the equation.
-x^{2}-6x=-8
Subtracting 8 from itself leaves 0.
\frac{-x^{2}-6x}{-1}=-\frac{8}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{8}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+6x=-\frac{8}{-1}
Divide -6 by -1.
x^{2}+6x=8
Divide -8 by -1.
x^{2}+6x+3^{2}=8+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=8+9
Square 3.
x^{2}+6x+9=17
Add 8 to 9.
\left(x+3\right)^{2}=17
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{17}
Take the square root of both sides of the equation.
x+3=\sqrt{17} x+3=-\sqrt{17}
Simplify.
x=\sqrt{17}-3 x=-\sqrt{17}-3
Subtract 3 from both sides of the equation.
-x^{2}-6x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -6 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 8}}{2\left(-1\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 8}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-6\right)±\sqrt{36+32}}{2\left(-1\right)}
Multiply 4 times 8.
x=\frac{-\left(-6\right)±\sqrt{68}}{2\left(-1\right)}
Add 36 to 32.
x=\frac{-\left(-6\right)±2\sqrt{17}}{2\left(-1\right)}
Take the square root of 68.
x=\frac{6±2\sqrt{17}}{2\left(-1\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{17}+6}{-2}
Now solve the equation x=\frac{6±2\sqrt{17}}{-2} when ± is plus. Add 6 to 2\sqrt{17}.
x=-\left(\sqrt{17}+3\right)
Divide 6+2\sqrt{17} by -2.
x=\frac{6-2\sqrt{17}}{-2}
Now solve the equation x=\frac{6±2\sqrt{17}}{-2} when ± is minus. Subtract 2\sqrt{17} from 6.
x=\sqrt{17}-3
Divide 6-2\sqrt{17} by -2.
x=-\left(\sqrt{17}+3\right) x=\sqrt{17}-3
The equation is now solved.
-x^{2}-6x+8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-6x+8-8=-8
Subtract 8 from both sides of the equation.
-x^{2}-6x=-8
Subtracting 8 from itself leaves 0.
\frac{-x^{2}-6x}{-1}=-\frac{8}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{8}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+6x=-\frac{8}{-1}
Divide -6 by -1.
x^{2}+6x=8
Divide -8 by -1.
x^{2}+6x+3^{2}=8+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=8+9
Square 3.
x^{2}+6x+9=17
Add 8 to 9.
\left(x+3\right)^{2}=17
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{17}
Take the square root of both sides of the equation.
x+3=\sqrt{17} x+3=-\sqrt{17}
Simplify.
x=\sqrt{17}-3 x=-\sqrt{17}-3
Subtract 3 from both sides of the equation.