Solve for x
x=\frac{\sqrt{37}-5}{2}\approx 0.541381265
x=\frac{-\sqrt{37}-5}{2}\approx -5.541381265
Graph
Share
Copied to clipboard
-x^{2}-5x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -5 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-5\right)±\sqrt{25+12}}{2\left(-1\right)}
Multiply 4 times 3.
x=\frac{-\left(-5\right)±\sqrt{37}}{2\left(-1\right)}
Add 25 to 12.
x=\frac{5±\sqrt{37}}{2\left(-1\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{37}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{37}+5}{-2}
Now solve the equation x=\frac{5±\sqrt{37}}{-2} when ± is plus. Add 5 to \sqrt{37}.
x=\frac{-\sqrt{37}-5}{2}
Divide 5+\sqrt{37} by -2.
x=\frac{5-\sqrt{37}}{-2}
Now solve the equation x=\frac{5±\sqrt{37}}{-2} when ± is minus. Subtract \sqrt{37} from 5.
x=\frac{\sqrt{37}-5}{2}
Divide 5-\sqrt{37} by -2.
x=\frac{-\sqrt{37}-5}{2} x=\frac{\sqrt{37}-5}{2}
The equation is now solved.
-x^{2}-5x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-5x+3-3=-3
Subtract 3 from both sides of the equation.
-x^{2}-5x=-3
Subtracting 3 from itself leaves 0.
\frac{-x^{2}-5x}{-1}=-\frac{3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{5}{-1}\right)x=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+5x=-\frac{3}{-1}
Divide -5 by -1.
x^{2}+5x=3
Divide -3 by -1.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=3+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=3+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{37}{4}
Add 3 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{37}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{37}}{2} x+\frac{5}{2}=-\frac{\sqrt{37}}{2}
Simplify.
x=\frac{\sqrt{37}-5}{2} x=\frac{-\sqrt{37}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}