Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-4x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 6}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 6}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16+24}}{2\left(-1\right)}
Multiply 4 times 6.
x=\frac{-\left(-4\right)±\sqrt{40}}{2\left(-1\right)}
Add 16 to 24.
x=\frac{-\left(-4\right)±2\sqrt{10}}{2\left(-1\right)}
Take the square root of 40.
x=\frac{4±2\sqrt{10}}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{10}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{10}+4}{-2}
Now solve the equation x=\frac{4±2\sqrt{10}}{-2} when ± is plus. Add 4 to 2\sqrt{10}.
x=-\left(\sqrt{10}+2\right)
Divide 4+2\sqrt{10} by -2.
x=\frac{4-2\sqrt{10}}{-2}
Now solve the equation x=\frac{4±2\sqrt{10}}{-2} when ± is minus. Subtract 2\sqrt{10} from 4.
x=\sqrt{10}-2
Divide 4-2\sqrt{10} by -2.
-x^{2}-4x+6=-\left(x-\left(-\left(\sqrt{10}+2\right)\right)\right)\left(x-\left(\sqrt{10}-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\left(2+\sqrt{10}\right) for x_{1} and -2+\sqrt{10} for x_{2}.