Solve for x
x=-1
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
-x^{2}+x+2=-\frac{1}{4}x^{2}+\frac{3}{4}x+1
Use the distributive property to multiply \frac{1}{2} by -\frac{1}{2}x^{2}+\frac{3}{2}x+2.
-x^{2}+x+2+\frac{1}{4}x^{2}=\frac{3}{4}x+1
Add \frac{1}{4}x^{2} to both sides.
-x^{2}+x+2+\frac{1}{4}x^{2}-\frac{3}{4}x=1
Subtract \frac{3}{4}x from both sides.
-x^{2}+\frac{1}{4}x+2+\frac{1}{4}x^{2}=1
Combine x and -\frac{3}{4}x to get \frac{1}{4}x.
-x^{2}+\frac{1}{4}x+2+\frac{1}{4}x^{2}-1=0
Subtract 1 from both sides.
-x^{2}+\frac{1}{4}x+1+\frac{1}{4}x^{2}=0
Subtract 1 from 2 to get 1.
-\frac{3}{4}x^{2}+\frac{1}{4}x+1=0
Combine -x^{2} and \frac{1}{4}x^{2} to get -\frac{3}{4}x^{2}.
x=\frac{-\frac{1}{4}±\sqrt{\left(\frac{1}{4}\right)^{2}-4\left(-\frac{3}{4}\right)}}{2\left(-\frac{3}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{4} for a, \frac{1}{4} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{4}±\sqrt{\frac{1}{16}-4\left(-\frac{3}{4}\right)}}{2\left(-\frac{3}{4}\right)}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{4}±\sqrt{\frac{1}{16}+3}}{2\left(-\frac{3}{4}\right)}
Multiply -4 times -\frac{3}{4}.
x=\frac{-\frac{1}{4}±\sqrt{\frac{49}{16}}}{2\left(-\frac{3}{4}\right)}
Add \frac{1}{16} to 3.
x=\frac{-\frac{1}{4}±\frac{7}{4}}{2\left(-\frac{3}{4}\right)}
Take the square root of \frac{49}{16}.
x=\frac{-\frac{1}{4}±\frac{7}{4}}{-\frac{3}{2}}
Multiply 2 times -\frac{3}{4}.
x=\frac{\frac{3}{2}}{-\frac{3}{2}}
Now solve the equation x=\frac{-\frac{1}{4}±\frac{7}{4}}{-\frac{3}{2}} when ± is plus. Add -\frac{1}{4} to \frac{7}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-1
Divide \frac{3}{2} by -\frac{3}{2} by multiplying \frac{3}{2} by the reciprocal of -\frac{3}{2}.
x=-\frac{2}{-\frac{3}{2}}
Now solve the equation x=\frac{-\frac{1}{4}±\frac{7}{4}}{-\frac{3}{2}} when ± is minus. Subtract \frac{7}{4} from -\frac{1}{4} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{4}{3}
Divide -2 by -\frac{3}{2} by multiplying -2 by the reciprocal of -\frac{3}{2}.
x=-1 x=\frac{4}{3}
The equation is now solved.
-x^{2}+x+2=-\frac{1}{4}x^{2}+\frac{3}{4}x+1
Use the distributive property to multiply \frac{1}{2} by -\frac{1}{2}x^{2}+\frac{3}{2}x+2.
-x^{2}+x+2+\frac{1}{4}x^{2}=\frac{3}{4}x+1
Add \frac{1}{4}x^{2} to both sides.
-x^{2}+x+2+\frac{1}{4}x^{2}-\frac{3}{4}x=1
Subtract \frac{3}{4}x from both sides.
-x^{2}+\frac{1}{4}x+2+\frac{1}{4}x^{2}=1
Combine x and -\frac{3}{4}x to get \frac{1}{4}x.
-x^{2}+\frac{1}{4}x+\frac{1}{4}x^{2}=1-2
Subtract 2 from both sides.
-x^{2}+\frac{1}{4}x+\frac{1}{4}x^{2}=-1
Subtract 2 from 1 to get -1.
-\frac{3}{4}x^{2}+\frac{1}{4}x=-1
Combine -x^{2} and \frac{1}{4}x^{2} to get -\frac{3}{4}x^{2}.
\frac{-\frac{3}{4}x^{2}+\frac{1}{4}x}{-\frac{3}{4}}=-\frac{1}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{1}{4}}{-\frac{3}{4}}x=-\frac{1}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
x^{2}-\frac{1}{3}x=-\frac{1}{-\frac{3}{4}}
Divide \frac{1}{4} by -\frac{3}{4} by multiplying \frac{1}{4} by the reciprocal of -\frac{3}{4}.
x^{2}-\frac{1}{3}x=\frac{4}{3}
Divide -1 by -\frac{3}{4} by multiplying -1 by the reciprocal of -\frac{3}{4}.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{4}{3}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{4}{3}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{49}{36}
Add \frac{4}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{49}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{7}{6} x-\frac{1}{6}=-\frac{7}{6}
Simplify.
x=\frac{4}{3} x=-1
Add \frac{1}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}