Solve for x
x = \frac{\sqrt{89} + 5}{2} \approx 7.216990566
x=\frac{5-\sqrt{89}}{2}\approx -2.216990566
Graph
Share
Copied to clipboard
-x^{2}+5x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 16}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4\times 16}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{25+64}}{2\left(-1\right)}
Multiply 4 times 16.
x=\frac{-5±\sqrt{89}}{2\left(-1\right)}
Add 25 to 64.
x=\frac{-5±\sqrt{89}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{89}-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{89}}{-2} when ± is plus. Add -5 to \sqrt{89}.
x=\frac{5-\sqrt{89}}{2}
Divide -5+\sqrt{89} by -2.
x=\frac{-\sqrt{89}-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{89}}{-2} when ± is minus. Subtract \sqrt{89} from -5.
x=\frac{\sqrt{89}+5}{2}
Divide -5-\sqrt{89} by -2.
x=\frac{5-\sqrt{89}}{2} x=\frac{\sqrt{89}+5}{2}
The equation is now solved.
-x^{2}+5x+16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+5x+16-16=-16
Subtract 16 from both sides of the equation.
-x^{2}+5x=-16
Subtracting 16 from itself leaves 0.
\frac{-x^{2}+5x}{-1}=-\frac{16}{-1}
Divide both sides by -1.
x^{2}+\frac{5}{-1}x=-\frac{16}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-5x=-\frac{16}{-1}
Divide 5 by -1.
x^{2}-5x=16
Divide -16 by -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=16+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=16+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{89}{4}
Add 16 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{89}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{89}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{89}}{2} x-\frac{5}{2}=-\frac{\sqrt{89}}{2}
Simplify.
x=\frac{\sqrt{89}+5}{2} x=\frac{5-\sqrt{89}}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}