Solve for x
x=2\sqrt{194}+26\approx 53.856776554
x=26-2\sqrt{194}\approx -1.856776554
Graph
Share
Copied to clipboard
-x^{2}+52x+640=540
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+52x+640-540=540-540
Subtract 540 from both sides of the equation.
-x^{2}+52x+640-540=0
Subtracting 540 from itself leaves 0.
-x^{2}+52x+100=0
Subtract 540 from 640.
x=\frac{-52±\sqrt{52^{2}-4\left(-1\right)\times 100}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 52 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52±\sqrt{2704-4\left(-1\right)\times 100}}{2\left(-1\right)}
Square 52.
x=\frac{-52±\sqrt{2704+4\times 100}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-52±\sqrt{2704+400}}{2\left(-1\right)}
Multiply 4 times 100.
x=\frac{-52±\sqrt{3104}}{2\left(-1\right)}
Add 2704 to 400.
x=\frac{-52±4\sqrt{194}}{2\left(-1\right)}
Take the square root of 3104.
x=\frac{-52±4\sqrt{194}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{194}-52}{-2}
Now solve the equation x=\frac{-52±4\sqrt{194}}{-2} when ± is plus. Add -52 to 4\sqrt{194}.
x=26-2\sqrt{194}
Divide -52+4\sqrt{194} by -2.
x=\frac{-4\sqrt{194}-52}{-2}
Now solve the equation x=\frac{-52±4\sqrt{194}}{-2} when ± is minus. Subtract 4\sqrt{194} from -52.
x=2\sqrt{194}+26
Divide -52-4\sqrt{194} by -2.
x=26-2\sqrt{194} x=2\sqrt{194}+26
The equation is now solved.
-x^{2}+52x+640=540
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+52x+640-640=540-640
Subtract 640 from both sides of the equation.
-x^{2}+52x=540-640
Subtracting 640 from itself leaves 0.
-x^{2}+52x=-100
Subtract 640 from 540.
\frac{-x^{2}+52x}{-1}=-\frac{100}{-1}
Divide both sides by -1.
x^{2}+\frac{52}{-1}x=-\frac{100}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-52x=-\frac{100}{-1}
Divide 52 by -1.
x^{2}-52x=100
Divide -100 by -1.
x^{2}-52x+\left(-26\right)^{2}=100+\left(-26\right)^{2}
Divide -52, the coefficient of the x term, by 2 to get -26. Then add the square of -26 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-52x+676=100+676
Square -26.
x^{2}-52x+676=776
Add 100 to 676.
\left(x-26\right)^{2}=776
Factor x^{2}-52x+676. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-26\right)^{2}}=\sqrt{776}
Take the square root of both sides of the equation.
x-26=2\sqrt{194} x-26=-2\sqrt{194}
Simplify.
x=2\sqrt{194}+26 x=26-2\sqrt{194}
Add 26 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}