Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=4 ab=-\left(-3\right)=3
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
a=3 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-x^{2}+3x\right)+\left(x-3\right)
Rewrite -x^{2}+4x-3 as \left(-x^{2}+3x\right)+\left(x-3\right).
-x\left(x-3\right)+x-3
Factor out -x in -x^{2}+3x.
\left(x-3\right)\left(-x+1\right)
Factor out common term x-3 by using distributive property.
-x^{2}+4x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square 4.
x=\frac{-4±\sqrt{16+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4±\sqrt{16-12}}{2\left(-1\right)}
Multiply 4 times -3.
x=\frac{-4±\sqrt{4}}{2\left(-1\right)}
Add 16 to -12.
x=\frac{-4±2}{2\left(-1\right)}
Take the square root of 4.
x=\frac{-4±2}{-2}
Multiply 2 times -1.
x=-\frac{2}{-2}
Now solve the equation x=\frac{-4±2}{-2} when ± is plus. Add -4 to 2.
x=1
Divide -2 by -2.
x=-\frac{6}{-2}
Now solve the equation x=\frac{-4±2}{-2} when ± is minus. Subtract 2 from -4.
x=3
Divide -6 by -2.
-x^{2}+4x-3=-\left(x-1\right)\left(x-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and 3 for x_{2}.