Solve for x
x=-20
x=24
Graph
Share
Copied to clipboard
a+b=4 ab=-480=-480
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+480. To find a and b, set up a system to be solved.
-1,480 -2,240 -3,160 -4,120 -5,96 -6,80 -8,60 -10,48 -12,40 -15,32 -16,30 -20,24
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -480.
-1+480=479 -2+240=238 -3+160=157 -4+120=116 -5+96=91 -6+80=74 -8+60=52 -10+48=38 -12+40=28 -15+32=17 -16+30=14 -20+24=4
Calculate the sum for each pair.
a=24 b=-20
The solution is the pair that gives sum 4.
\left(-x^{2}+24x\right)+\left(-20x+480\right)
Rewrite -x^{2}+4x+480 as \left(-x^{2}+24x\right)+\left(-20x+480\right).
-x\left(x-24\right)-20\left(x-24\right)
Factor out -x in the first and -20 in the second group.
\left(x-24\right)\left(-x-20\right)
Factor out common term x-24 by using distributive property.
x=24 x=-20
To find equation solutions, solve x-24=0 and -x-20=0.
-x^{2}+4x+480=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 480}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and 480 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 480}}{2\left(-1\right)}
Square 4.
x=\frac{-4±\sqrt{16+4\times 480}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4±\sqrt{16+1920}}{2\left(-1\right)}
Multiply 4 times 480.
x=\frac{-4±\sqrt{1936}}{2\left(-1\right)}
Add 16 to 1920.
x=\frac{-4±44}{2\left(-1\right)}
Take the square root of 1936.
x=\frac{-4±44}{-2}
Multiply 2 times -1.
x=\frac{40}{-2}
Now solve the equation x=\frac{-4±44}{-2} when ± is plus. Add -4 to 44.
x=-20
Divide 40 by -2.
x=-\frac{48}{-2}
Now solve the equation x=\frac{-4±44}{-2} when ± is minus. Subtract 44 from -4.
x=24
Divide -48 by -2.
x=-20 x=24
The equation is now solved.
-x^{2}+4x+480=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+4x+480-480=-480
Subtract 480 from both sides of the equation.
-x^{2}+4x=-480
Subtracting 480 from itself leaves 0.
\frac{-x^{2}+4x}{-1}=-\frac{480}{-1}
Divide both sides by -1.
x^{2}+\frac{4}{-1}x=-\frac{480}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-4x=-\frac{480}{-1}
Divide 4 by -1.
x^{2}-4x=480
Divide -480 by -1.
x^{2}-4x+\left(-2\right)^{2}=480+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=480+4
Square -2.
x^{2}-4x+4=484
Add 480 to 4.
\left(x-2\right)^{2}=484
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{484}
Take the square root of both sides of the equation.
x-2=22 x-2=-22
Simplify.
x=24 x=-20
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}