Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+3x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 8}}{2\left(-1\right)}
Square 3.
x=\frac{-3±\sqrt{9+4\times 8}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-3±\sqrt{9+32}}{2\left(-1\right)}
Multiply 4 times 8.
x=\frac{-3±\sqrt{41}}{2\left(-1\right)}
Add 9 to 32.
x=\frac{-3±\sqrt{41}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{41}-3}{-2}
Now solve the equation x=\frac{-3±\sqrt{41}}{-2} when ± is plus. Add -3 to \sqrt{41}.
x=\frac{3-\sqrt{41}}{2}
Divide -3+\sqrt{41} by -2.
x=\frac{-\sqrt{41}-3}{-2}
Now solve the equation x=\frac{-3±\sqrt{41}}{-2} when ± is minus. Subtract \sqrt{41} from -3.
x=\frac{\sqrt{41}+3}{2}
Divide -3-\sqrt{41} by -2.
-x^{2}+3x+8=-\left(x-\frac{3-\sqrt{41}}{2}\right)\left(x-\frac{\sqrt{41}+3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3-\sqrt{41}}{2} for x_{1} and \frac{3+\sqrt{41}}{2} for x_{2}.