Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+34x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-34±\sqrt{34^{2}-4\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 34 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-34±\sqrt{1156-4\left(-1\right)}}{2\left(-1\right)}
Square 34.
x=\frac{-34±\sqrt{1156+4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-34±\sqrt{1160}}{2\left(-1\right)}
Add 1156 to 4.
x=\frac{-34±2\sqrt{290}}{2\left(-1\right)}
Take the square root of 1160.
x=\frac{-34±2\sqrt{290}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{290}-34}{-2}
Now solve the equation x=\frac{-34±2\sqrt{290}}{-2} when ± is plus. Add -34 to 2\sqrt{290}.
x=17-\sqrt{290}
Divide -34+2\sqrt{290} by -2.
x=\frac{-2\sqrt{290}-34}{-2}
Now solve the equation x=\frac{-34±2\sqrt{290}}{-2} when ± is minus. Subtract 2\sqrt{290} from -34.
x=\sqrt{290}+17
Divide -34-2\sqrt{290} by -2.
x=17-\sqrt{290} x=\sqrt{290}+17
The equation is now solved.
-x^{2}+34x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+34x+1-1=-1
Subtract 1 from both sides of the equation.
-x^{2}+34x=-1
Subtracting 1 from itself leaves 0.
\frac{-x^{2}+34x}{-1}=-\frac{1}{-1}
Divide both sides by -1.
x^{2}+\frac{34}{-1}x=-\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-34x=-\frac{1}{-1}
Divide 34 by -1.
x^{2}-34x=1
Divide -1 by -1.
x^{2}-34x+\left(-17\right)^{2}=1+\left(-17\right)^{2}
Divide -34, the coefficient of the x term, by 2 to get -17. Then add the square of -17 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-34x+289=1+289
Square -17.
x^{2}-34x+289=290
Add 1 to 289.
\left(x-17\right)^{2}=290
Factor x^{2}-34x+289. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-17\right)^{2}}=\sqrt{290}
Take the square root of both sides of the equation.
x-17=\sqrt{290} x-17=-\sqrt{290}
Simplify.
x=\sqrt{290}+17 x=17-\sqrt{290}
Add 17 to both sides of the equation.