Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+28x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 28 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±28}{2\left(-1\right)}
Take the square root of 28^{2}.
x=\frac{-28±28}{-2}
Multiply 2 times -1.
x=\frac{0}{-2}
Now solve the equation x=\frac{-28±28}{-2} when ± is plus. Add -28 to 28.
x=0
Divide 0 by -2.
x=-\frac{56}{-2}
Now solve the equation x=\frac{-28±28}{-2} when ± is minus. Subtract 28 from -28.
x=28
Divide -56 by -2.
x=0 x=28
The equation is now solved.
-x^{2}+28x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+28x}{-1}=\frac{0}{-1}
Divide both sides by -1.
x^{2}+\frac{28}{-1}x=\frac{0}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-28x=\frac{0}{-1}
Divide 28 by -1.
x^{2}-28x=0
Divide 0 by -1.
x^{2}-28x+\left(-14\right)^{2}=\left(-14\right)^{2}
Divide -28, the coefficient of the x term, by 2 to get -14. Then add the square of -14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-28x+196=196
Square -14.
\left(x-14\right)^{2}=196
Factor x^{2}-28x+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-14\right)^{2}}=\sqrt{196}
Take the square root of both sides of the equation.
x-14=14 x-14=-14
Simplify.
x=28 x=0
Add 14 to both sides of the equation.