Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+26x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-26±\sqrt{26^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-26±\sqrt{676-4\left(-1\right)\times 2}}{2\left(-1\right)}
Square 26.
x=\frac{-26±\sqrt{676+4\times 2}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-26±\sqrt{676+8}}{2\left(-1\right)}
Multiply 4 times 2.
x=\frac{-26±\sqrt{684}}{2\left(-1\right)}
Add 676 to 8.
x=\frac{-26±6\sqrt{19}}{2\left(-1\right)}
Take the square root of 684.
x=\frac{-26±6\sqrt{19}}{-2}
Multiply 2 times -1.
x=\frac{6\sqrt{19}-26}{-2}
Now solve the equation x=\frac{-26±6\sqrt{19}}{-2} when ± is plus. Add -26 to 6\sqrt{19}.
x=13-3\sqrt{19}
Divide -26+6\sqrt{19} by -2.
x=\frac{-6\sqrt{19}-26}{-2}
Now solve the equation x=\frac{-26±6\sqrt{19}}{-2} when ± is minus. Subtract 6\sqrt{19} from -26.
x=3\sqrt{19}+13
Divide -26-6\sqrt{19} by -2.
-x^{2}+26x+2=-\left(x-\left(13-3\sqrt{19}\right)\right)\left(x-\left(3\sqrt{19}+13\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 13-3\sqrt{19} for x_{1} and 13+3\sqrt{19} for x_{2}.