Solve for x
x=-1
x=2019.5
Graph
Share
Copied to clipboard
-x^{2}+2019.5x-x=-2019.5
Subtract x from both sides.
-x^{2}+2018.5x=-2019.5
Combine 2019.5x and -x to get 2018.5x.
-x^{2}+2018.5x+2019.5=0
Add 2019.5 to both sides.
-x^{2}+2018.5x+\frac{4039}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2018.5±\sqrt{2018.5^{2}-4\left(-1\right)\times \frac{4039}{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2018.5 for b, and \frac{4039}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2018.5±\sqrt{4074342.25-4\left(-1\right)\times \frac{4039}{2}}}{2\left(-1\right)}
Square 2018.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-2018.5±\sqrt{4074342.25+4\times \frac{4039}{2}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-2018.5±\sqrt{4074342.25+8078}}{2\left(-1\right)}
Multiply 4 times \frac{4039}{2}.
x=\frac{-2018.5±\sqrt{4082420.25}}{2\left(-1\right)}
Add 4074342.25 to 8078.
x=\frac{-2018.5±\frac{4041}{2}}{2\left(-1\right)}
Take the square root of 4082420.25.
x=\frac{-2018.5±\frac{4041}{2}}{-2}
Multiply 2 times -1.
x=\frac{2}{-2}
Now solve the equation x=\frac{-2018.5±\frac{4041}{2}}{-2} when ± is plus. Add -2018.5 to \frac{4041}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-1
Divide 2 by -2.
x=-\frac{4039}{-2}
Now solve the equation x=\frac{-2018.5±\frac{4041}{2}}{-2} when ± is minus. Subtract \frac{4041}{2} from -2018.5 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{4039}{2}
Divide -4039 by -2.
x=-1 x=\frac{4039}{2}
The equation is now solved.
-x^{2}+2019.5x-x=-2019.5
Subtract x from both sides.
-x^{2}+2018.5x=-2019.5
Combine 2019.5x and -x to get 2018.5x.
\frac{-x^{2}+2018.5x}{-1}=-\frac{2019.5}{-1}
Divide both sides by -1.
x^{2}+\frac{2018.5}{-1}x=-\frac{2019.5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-2018.5x=-\frac{2019.5}{-1}
Divide 2018.5 by -1.
x^{2}-2018.5x=2019.5
Divide -2019.5 by -1.
x^{2}-2018.5x+\left(-1009.25\right)^{2}=2019.5+\left(-1009.25\right)^{2}
Divide -2018.5, the coefficient of the x term, by 2 to get -1009.25. Then add the square of -1009.25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2018.5x+1018585.5625=2019.5+1018585.5625
Square -1009.25 by squaring both the numerator and the denominator of the fraction.
x^{2}-2018.5x+1018585.5625=1020605.0625
Add 2019.5 to 1018585.5625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-1009.25\right)^{2}=1020605.0625
Factor x^{2}-2018.5x+1018585.5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1009.25\right)^{2}}=\sqrt{1020605.0625}
Take the square root of both sides of the equation.
x-1009.25=\frac{4041}{4} x-1009.25=-\frac{4041}{4}
Simplify.
x=\frac{4039}{2} x=-1
Add 1009.25 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}