Solve for x
x=\sqrt{51}+8\approx 15.141428429
x=8-\sqrt{51}\approx 0.858571571
Graph
Share
Copied to clipboard
-x^{2}+16x-13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 16 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
Square 16.
x=\frac{-16±\sqrt{256+4\left(-13\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-16±\sqrt{256-52}}{2\left(-1\right)}
Multiply 4 times -13.
x=\frac{-16±\sqrt{204}}{2\left(-1\right)}
Add 256 to -52.
x=\frac{-16±2\sqrt{51}}{2\left(-1\right)}
Take the square root of 204.
x=\frac{-16±2\sqrt{51}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{51}-16}{-2}
Now solve the equation x=\frac{-16±2\sqrt{51}}{-2} when ± is plus. Add -16 to 2\sqrt{51}.
x=8-\sqrt{51}
Divide -16+2\sqrt{51} by -2.
x=\frac{-2\sqrt{51}-16}{-2}
Now solve the equation x=\frac{-16±2\sqrt{51}}{-2} when ± is minus. Subtract 2\sqrt{51} from -16.
x=\sqrt{51}+8
Divide -16-2\sqrt{51} by -2.
x=8-\sqrt{51} x=\sqrt{51}+8
The equation is now solved.
-x^{2}+16x-13=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+16x-13-\left(-13\right)=-\left(-13\right)
Add 13 to both sides of the equation.
-x^{2}+16x=-\left(-13\right)
Subtracting -13 from itself leaves 0.
-x^{2}+16x=13
Subtract -13 from 0.
\frac{-x^{2}+16x}{-1}=\frac{13}{-1}
Divide both sides by -1.
x^{2}+\frac{16}{-1}x=\frac{13}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-16x=\frac{13}{-1}
Divide 16 by -1.
x^{2}-16x=-13
Divide 13 by -1.
x^{2}-16x+\left(-8\right)^{2}=-13+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-13+64
Square -8.
x^{2}-16x+64=51
Add -13 to 64.
\left(x-8\right)^{2}=51
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{51}
Take the square root of both sides of the equation.
x-8=\sqrt{51} x-8=-\sqrt{51}
Simplify.
x=\sqrt{51}+8 x=8-\sqrt{51}
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}