Solve for x
x = \frac{\sqrt{249} + 17}{2} \approx 16.389866919
x=\frac{17-\sqrt{249}}{2}\approx 0.610133081
Graph
Share
Copied to clipboard
-x^{2}+15x+2x=10
Add 2x to both sides.
-x^{2}+17x=10
Combine 15x and 2x to get 17x.
-x^{2}+17x-10=0
Subtract 10 from both sides.
x=\frac{-17±\sqrt{17^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 17 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Square 17.
x=\frac{-17±\sqrt{289+4\left(-10\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-17±\sqrt{289-40}}{2\left(-1\right)}
Multiply 4 times -10.
x=\frac{-17±\sqrt{249}}{2\left(-1\right)}
Add 289 to -40.
x=\frac{-17±\sqrt{249}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{249}-17}{-2}
Now solve the equation x=\frac{-17±\sqrt{249}}{-2} when ± is plus. Add -17 to \sqrt{249}.
x=\frac{17-\sqrt{249}}{2}
Divide -17+\sqrt{249} by -2.
x=\frac{-\sqrt{249}-17}{-2}
Now solve the equation x=\frac{-17±\sqrt{249}}{-2} when ± is minus. Subtract \sqrt{249} from -17.
x=\frac{\sqrt{249}+17}{2}
Divide -17-\sqrt{249} by -2.
x=\frac{17-\sqrt{249}}{2} x=\frac{\sqrt{249}+17}{2}
The equation is now solved.
-x^{2}+15x+2x=10
Add 2x to both sides.
-x^{2}+17x=10
Combine 15x and 2x to get 17x.
\frac{-x^{2}+17x}{-1}=\frac{10}{-1}
Divide both sides by -1.
x^{2}+\frac{17}{-1}x=\frac{10}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-17x=\frac{10}{-1}
Divide 17 by -1.
x^{2}-17x=-10
Divide 10 by -1.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-10+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-17x+\frac{289}{4}=-10+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-17x+\frac{289}{4}=\frac{249}{4}
Add -10 to \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{249}{4}
Factor x^{2}-17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{249}{4}}
Take the square root of both sides of the equation.
x-\frac{17}{2}=\frac{\sqrt{249}}{2} x-\frac{17}{2}=-\frac{\sqrt{249}}{2}
Simplify.
x=\frac{\sqrt{249}+17}{2} x=\frac{17-\sqrt{249}}{2}
Add \frac{17}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}