Solve for x
x = \frac{\sqrt{331} + 9}{10} \approx 2.71934054
x=\frac{9-\sqrt{331}}{10}\approx -0.91934054
Graph
Share
Copied to clipboard
-x^{2}+1.8x+2.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1.8±\sqrt{1.8^{2}-4\left(-1\right)\times 2.5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1.8 for b, and 2.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1.8±\sqrt{3.24-4\left(-1\right)\times 2.5}}{2\left(-1\right)}
Square 1.8 by squaring both the numerator and the denominator of the fraction.
x=\frac{-1.8±\sqrt{3.24+4\times 2.5}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1.8±\sqrt{3.24+10}}{2\left(-1\right)}
Multiply 4 times 2.5.
x=\frac{-1.8±\sqrt{13.24}}{2\left(-1\right)}
Add 3.24 to 10.
x=\frac{-1.8±\frac{\sqrt{331}}{5}}{2\left(-1\right)}
Take the square root of 13.24.
x=\frac{-1.8±\frac{\sqrt{331}}{5}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{331}-9}{-2\times 5}
Now solve the equation x=\frac{-1.8±\frac{\sqrt{331}}{5}}{-2} when ± is plus. Add -1.8 to \frac{\sqrt{331}}{5}.
x=\frac{9-\sqrt{331}}{10}
Divide \frac{-9+\sqrt{331}}{5} by -2.
x=\frac{-\sqrt{331}-9}{-2\times 5}
Now solve the equation x=\frac{-1.8±\frac{\sqrt{331}}{5}}{-2} when ± is minus. Subtract \frac{\sqrt{331}}{5} from -1.8.
x=\frac{\sqrt{331}+9}{10}
Divide \frac{-9-\sqrt{331}}{5} by -2.
x=\frac{9-\sqrt{331}}{10} x=\frac{\sqrt{331}+9}{10}
The equation is now solved.
-x^{2}+1.8x+2.5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+1.8x+2.5-2.5=-2.5
Subtract 2.5 from both sides of the equation.
-x^{2}+1.8x=-2.5
Subtracting 2.5 from itself leaves 0.
\frac{-x^{2}+1.8x}{-1}=-\frac{2.5}{-1}
Divide both sides by -1.
x^{2}+\frac{1.8}{-1}x=-\frac{2.5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-1.8x=-\frac{2.5}{-1}
Divide 1.8 by -1.
x^{2}-1.8x=2.5
Divide -2.5 by -1.
x^{2}-1.8x+\left(-0.9\right)^{2}=2.5+\left(-0.9\right)^{2}
Divide -1.8, the coefficient of the x term, by 2 to get -0.9. Then add the square of -0.9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1.8x+0.81=2.5+0.81
Square -0.9 by squaring both the numerator and the denominator of the fraction.
x^{2}-1.8x+0.81=3.31
Add 2.5 to 0.81 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.9\right)^{2}=3.31
Factor x^{2}-1.8x+0.81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.9\right)^{2}}=\sqrt{3.31}
Take the square root of both sides of the equation.
x-0.9=\frac{\sqrt{331}}{10} x-0.9=-\frac{\sqrt{331}}{10}
Simplify.
x=\frac{\sqrt{331}+9}{10} x=\frac{9-\sqrt{331}}{10}
Add 0.9 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}