Solve for t
t=5\sqrt{11}+10\approx 26.583123952
t=10-5\sqrt{11}\approx -6.583123952
Share
Copied to clipboard
-t^{2}+20t+175=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-20±\sqrt{20^{2}-4\left(-1\right)\times 175}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 20 for b, and 175 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-20±\sqrt{400-4\left(-1\right)\times 175}}{2\left(-1\right)}
Square 20.
t=\frac{-20±\sqrt{400+4\times 175}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-20±\sqrt{400+700}}{2\left(-1\right)}
Multiply 4 times 175.
t=\frac{-20±\sqrt{1100}}{2\left(-1\right)}
Add 400 to 700.
t=\frac{-20±10\sqrt{11}}{2\left(-1\right)}
Take the square root of 1100.
t=\frac{-20±10\sqrt{11}}{-2}
Multiply 2 times -1.
t=\frac{10\sqrt{11}-20}{-2}
Now solve the equation t=\frac{-20±10\sqrt{11}}{-2} when ± is plus. Add -20 to 10\sqrt{11}.
t=10-5\sqrt{11}
Divide -20+10\sqrt{11} by -2.
t=\frac{-10\sqrt{11}-20}{-2}
Now solve the equation t=\frac{-20±10\sqrt{11}}{-2} when ± is minus. Subtract 10\sqrt{11} from -20.
t=5\sqrt{11}+10
Divide -20-10\sqrt{11} by -2.
t=10-5\sqrt{11} t=5\sqrt{11}+10
The equation is now solved.
-t^{2}+20t+175=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-t^{2}+20t+175-175=-175
Subtract 175 from both sides of the equation.
-t^{2}+20t=-175
Subtracting 175 from itself leaves 0.
\frac{-t^{2}+20t}{-1}=-\frac{175}{-1}
Divide both sides by -1.
t^{2}+\frac{20}{-1}t=-\frac{175}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-20t=-\frac{175}{-1}
Divide 20 by -1.
t^{2}-20t=175
Divide -175 by -1.
t^{2}-20t+\left(-10\right)^{2}=175+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-20t+100=175+100
Square -10.
t^{2}-20t+100=275
Add 175 to 100.
\left(t-10\right)^{2}=275
Factor t^{2}-20t+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-10\right)^{2}}=\sqrt{275}
Take the square root of both sides of the equation.
t-10=5\sqrt{11} t-10=-5\sqrt{11}
Simplify.
t=5\sqrt{11}+10 t=10-5\sqrt{11}
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}