Solve for x
x=\frac{\sqrt{14}}{2}+2\approx 3.870828693
x=-\frac{\sqrt{14}}{2}+2\approx 0.129171307
Graph
Share
Copied to clipboard
-\left(x-2\right)^{2}+3.5-3.5=-3.5
Subtract 3.5 from both sides of the equation.
-\left(x-2\right)^{2}=-3.5
Subtracting 3.5 from itself leaves 0.
\frac{-\left(x-2\right)^{2}}{-1}=-\frac{3.5}{-1}
Divide both sides by -1.
\left(x-2\right)^{2}=-\frac{3.5}{-1}
Dividing by -1 undoes the multiplication by -1.
\left(x-2\right)^{2}=3.5
Divide -3.5 by -1.
x-2=\frac{\sqrt{14}}{2} x-2=-\frac{\sqrt{14}}{2}
Take the square root of both sides of the equation.
x-2-\left(-2\right)=\frac{\sqrt{14}}{2}-\left(-2\right) x-2-\left(-2\right)=-\frac{\sqrt{14}}{2}-\left(-2\right)
Add 2 to both sides of the equation.
x=\frac{\sqrt{14}}{2}-\left(-2\right) x=-\frac{\sqrt{14}}{2}-\left(-2\right)
Subtracting -2 from itself leaves 0.
x=\frac{\sqrt{14}}{2}+2
Subtract -2 from \frac{\sqrt{14}}{2}.
x=-\frac{\sqrt{14}}{2}+2
Subtract -2 from -\frac{\sqrt{14}}{2}.
x=\frac{\sqrt{14}}{2}+2 x=-\frac{\sqrt{14}}{2}+2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}