Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\left(x^{2}+6x+9\right)-4\left(3x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
-x^{2}-6x-9-4\left(3x+1\right)=0
To find the opposite of x^{2}+6x+9, find the opposite of each term.
-x^{2}-6x-9-12x-4=0
Use the distributive property to multiply -4 by 3x+1.
-x^{2}-18x-9-4=0
Combine -6x and -12x to get -18x.
-x^{2}-18x-13=0
Subtract 4 from -9 to get -13.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -18 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324+4\left(-13\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-18\right)±\sqrt{324-52}}{2\left(-1\right)}
Multiply 4 times -13.
x=\frac{-\left(-18\right)±\sqrt{272}}{2\left(-1\right)}
Add 324 to -52.
x=\frac{-\left(-18\right)±4\sqrt{17}}{2\left(-1\right)}
Take the square root of 272.
x=\frac{18±4\sqrt{17}}{2\left(-1\right)}
The opposite of -18 is 18.
x=\frac{18±4\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{17}+18}{-2}
Now solve the equation x=\frac{18±4\sqrt{17}}{-2} when ± is plus. Add 18 to 4\sqrt{17}.
x=-2\sqrt{17}-9
Divide 18+4\sqrt{17} by -2.
x=\frac{18-4\sqrt{17}}{-2}
Now solve the equation x=\frac{18±4\sqrt{17}}{-2} when ± is minus. Subtract 4\sqrt{17} from 18.
x=2\sqrt{17}-9
Divide 18-4\sqrt{17} by -2.
x=-2\sqrt{17}-9 x=2\sqrt{17}-9
The equation is now solved.
-\left(x^{2}+6x+9\right)-4\left(3x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
-x^{2}-6x-9-4\left(3x+1\right)=0
To find the opposite of x^{2}+6x+9, find the opposite of each term.
-x^{2}-6x-9-12x-4=0
Use the distributive property to multiply -4 by 3x+1.
-x^{2}-18x-9-4=0
Combine -6x and -12x to get -18x.
-x^{2}-18x-13=0
Subtract 4 from -9 to get -13.
-x^{2}-18x=13
Add 13 to both sides. Anything plus zero gives itself.
\frac{-x^{2}-18x}{-1}=\frac{13}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{18}{-1}\right)x=\frac{13}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+18x=\frac{13}{-1}
Divide -18 by -1.
x^{2}+18x=-13
Divide 13 by -1.
x^{2}+18x+9^{2}=-13+9^{2}
Divide 18, the coefficient of the x term, by 2 to get 9. Then add the square of 9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+18x+81=-13+81
Square 9.
x^{2}+18x+81=68
Add -13 to 81.
\left(x+9\right)^{2}=68
Factor x^{2}+18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{68}
Take the square root of both sides of the equation.
x+9=2\sqrt{17} x+9=-2\sqrt{17}
Simplify.
x=2\sqrt{17}-9 x=-2\sqrt{17}-9
Subtract 9 from both sides of the equation.