Solve for x (complex solution)
x=\frac{-\sqrt{50034}i+4}{25}\approx 0.16-8.947312446i
x=\frac{4+\sqrt{50034}i}{25}\approx 0.16+8.947312446i
Graph
Share
Copied to clipboard
-5^{2}x^{2}+8x=2002
Expand \left(5x\right)^{2}.
-25x^{2}+8x=2002
Calculate 5 to the power of 2 and get 25.
-25x^{2}+8x-2002=0
Subtract 2002 from both sides.
x=\frac{-8±\sqrt{8^{2}-4\left(-25\right)\left(-2002\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 8 for b, and -2002 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-25\right)\left(-2002\right)}}{2\left(-25\right)}
Square 8.
x=\frac{-8±\sqrt{64+100\left(-2002\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-8±\sqrt{64-200200}}{2\left(-25\right)}
Multiply 100 times -2002.
x=\frac{-8±\sqrt{-200136}}{2\left(-25\right)}
Add 64 to -200200.
x=\frac{-8±2\sqrt{50034}i}{2\left(-25\right)}
Take the square root of -200136.
x=\frac{-8±2\sqrt{50034}i}{-50}
Multiply 2 times -25.
x=\frac{-8+2\sqrt{50034}i}{-50}
Now solve the equation x=\frac{-8±2\sqrt{50034}i}{-50} when ± is plus. Add -8 to 2i\sqrt{50034}.
x=\frac{-\sqrt{50034}i+4}{25}
Divide -8+2i\sqrt{50034} by -50.
x=\frac{-2\sqrt{50034}i-8}{-50}
Now solve the equation x=\frac{-8±2\sqrt{50034}i}{-50} when ± is minus. Subtract 2i\sqrt{50034} from -8.
x=\frac{4+\sqrt{50034}i}{25}
Divide -8-2i\sqrt{50034} by -50.
x=\frac{-\sqrt{50034}i+4}{25} x=\frac{4+\sqrt{50034}i}{25}
The equation is now solved.
-5^{2}x^{2}+8x=2002
Expand \left(5x\right)^{2}.
-25x^{2}+8x=2002
Calculate 5 to the power of 2 and get 25.
\frac{-25x^{2}+8x}{-25}=\frac{2002}{-25}
Divide both sides by -25.
x^{2}+\frac{8}{-25}x=\frac{2002}{-25}
Dividing by -25 undoes the multiplication by -25.
x^{2}-\frac{8}{25}x=\frac{2002}{-25}
Divide 8 by -25.
x^{2}-\frac{8}{25}x=-\frac{2002}{25}
Divide 2002 by -25.
x^{2}-\frac{8}{25}x+\left(-\frac{4}{25}\right)^{2}=-\frac{2002}{25}+\left(-\frac{4}{25}\right)^{2}
Divide -\frac{8}{25}, the coefficient of the x term, by 2 to get -\frac{4}{25}. Then add the square of -\frac{4}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{25}x+\frac{16}{625}=-\frac{2002}{25}+\frac{16}{625}
Square -\frac{4}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{25}x+\frac{16}{625}=-\frac{50034}{625}
Add -\frac{2002}{25} to \frac{16}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{25}\right)^{2}=-\frac{50034}{625}
Factor x^{2}-\frac{8}{25}x+\frac{16}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{25}\right)^{2}}=\sqrt{-\frac{50034}{625}}
Take the square root of both sides of the equation.
x-\frac{4}{25}=\frac{\sqrt{50034}i}{25} x-\frac{4}{25}=-\frac{\sqrt{50034}i}{25}
Simplify.
x=\frac{4+\sqrt{50034}i}{25} x=\frac{-\sqrt{50034}i+4}{25}
Add \frac{4}{25} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}