Evaluate
3\sqrt{6}-8\sqrt{7}-2\approx -15.81754126
Factor
3 \sqrt{6} - 8 \sqrt{7} - 2 = -15.81754126
Share
Copied to clipboard
-7\sqrt{7}-5\sqrt{\frac{4}{25}}+\sqrt{54}-\frac{1}{4}\sqrt{112}
Factor 343=7^{2}\times 7. Rewrite the square root of the product \sqrt{7^{2}\times 7} as the product of square roots \sqrt{7^{2}}\sqrt{7}. Take the square root of 7^{2}.
-7\sqrt{7}-5\times \frac{2}{5}+\sqrt{54}-\frac{1}{4}\sqrt{112}
Rewrite the square root of the division \frac{4}{25} as the division of square roots \frac{\sqrt{4}}{\sqrt{25}}. Take the square root of both numerator and denominator.
-7\sqrt{7}-2+\sqrt{54}-\frac{1}{4}\sqrt{112}
Multiply -5 times \frac{2}{5}.
-7\sqrt{7}-2+3\sqrt{6}-\frac{1}{4}\sqrt{112}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
-7\sqrt{7}-2+3\sqrt{6}-\frac{1}{4}\times 4\sqrt{7}
Factor 112=4^{2}\times 7. Rewrite the square root of the product \sqrt{4^{2}\times 7} as the product of square roots \sqrt{4^{2}}\sqrt{7}. Take the square root of 4^{2}.
-7\sqrt{7}-2+3\sqrt{6}-\sqrt{7}
Cancel out 4 and 4.
-8\sqrt{7}-2+3\sqrt{6}
Combine -7\sqrt{7} and -\sqrt{7} to get -8\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}